These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26102345)

  • 1. Understanding the effect of touchdown distance and ankle joint kinematics on sprint acceleration performance through computer simulation.
    Bezodis NE; Trewartha G; Salo AI
    Sports Biomech; 2015 Jun; 14(2):232-45. PubMed ID: 26102345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes.
    Bezodis NE; North JS; Razavet JL
    J Sports Sci; 2017 Sep; 35(18):1-8. PubMed ID: 27700312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case studies.
    Bezodis NE; Salo AI; Trewartha G
    J Sports Sci; 2014; 32(8):738-46. PubMed ID: 24359568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between kinematic characteristics and ratio of forces during initial sprint acceleration.
    King D; Burnie L; Nagahara R; Bezodis NE
    J Sports Sci; 2022 Nov; 40(22):2524-2532. PubMed ID: 36722337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis I; Irwin G
    J Sports Sci; 2017 Aug; 35(16):1629-1635. PubMed ID: 27598715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medial gastrocnemius muscle fascicles shorten throughout stance during sprint acceleration.
    Werkhausen A; Willwacher S; Albracht K
    Scand J Med Sci Sports; 2021 Jul; 31(7):1471-1480. PubMed ID: 33749906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segment-interaction analysis of the stance limb in sprint running.
    Hunter JP; Marshall RN; McNair PJ
    J Biomech; 2004 Sep; 37(9):1439-46. PubMed ID: 15275853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters.
    Bezodis IN; Cowburn J; Brazil A; Richardson R; Wilson C; Exell TA; Irwin G
    Sports Biomech; 2020 Apr; 19(2):189-200. PubMed ID: 29768121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do footfall patterns in forefoot runners change over an exhaustive run?
    Jewell C; Boyer KA; Hamill J
    J Sports Sci; 2017 Jan; 35(1):74-80. PubMed ID: 27003185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of propulsion and body lift during the first two stances of sprint running: a simulation study.
    Debaere S; Delecluse C; Aerenhouts D; Hagman F; Jonkers I
    J Sports Sci; 2015; 33(19):2016-24. PubMed ID: 25798644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal force production and multi-segment foot kinematics during the acceleration phase of bend sprinting.
    Judson LJ; Churchill SM; Barnes A; Stone JA; Brookes IGA; Wheat J
    Scand J Med Sci Sports; 2019 Oct; 29(10):1563-1571. PubMed ID: 31131939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Importance of "Front-Side Mechanics" in Athletics Sprinting.
    Haugen T; Danielsen J; Alnes LO; McGhie D; Sandbakk Ø; Ettema G
    Int J Sports Physiol Perform; 2018 Apr; 13(4):420-427. PubMed ID: 28872386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sled Towing: The Optimal Overload for Peak Power Production.
    Monte A; Nardello F; Zamparo P
    Int J Sports Physiol Perform; 2017 Sep; 12(8):1052-1058. PubMed ID: 27967284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint moments and power in the acceleration phase of bend sprinting.
    Judson LJ; Churchill SM; Barnes A; Stone JA; Wheat J
    J Biomech; 2020 Mar; 101():109632. PubMed ID: 31987576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint kinetic determinants of starting block performance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis IN; Irwin G
    J Sports Sci; 2018 Jul; 36(14):1656-1662. PubMed ID: 29173043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle preactivation control: simulation of ankle joint adjustments at touchdown during running on uneven ground.
    Müller R; Siebert T; Blickhan R
    J Appl Biomech; 2012 Dec; 28(6):718-25. PubMed ID: 22814314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual Responses to a Barefoot Running Program: Insight Into Risk of Injury.
    Tam N; Tucker R; Astephen Wilson JL
    Am J Sports Med; 2016 Mar; 44(3):777-84. PubMed ID: 26744483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.