These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26102519)

  • 1. Extraction of intercalated O2 from aligned carbon nanotubes: the breaking of intertube paths and exponential changes in resistance.
    Tsai HJ; Lin WY; Chin W; Tsai TY; Hsu WK
    Chemphyschem; 2015 Aug; 16(12):2625-9. PubMed ID: 26102519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio calculations of electron affinity and ionization potential of carbon nanotubes.
    Buonocore F; Trani F; Ninno D; Di Matteo A; Cantele G; Iadonisi G
    Nanotechnology; 2008 Jan; 19(2):025711. PubMed ID: 21817560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes.
    Milnera M; Kurti J; Hulman M; Kuzmany H
    Phys Rev Lett; 2000 Feb; 84(6):1324-7. PubMed ID: 11017509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier.
    Havu P; Hashemi MJ; Kaukonen M; Seppälä ET; Nieminen RM
    J Phys Condens Matter; 2011 Mar; 23(11):112203. PubMed ID: 21358037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting mechanical resonance in carbon nanotubes via inter-tube electrical transport measurements.
    Singh JP; Teki R; Ci L; Ajayan P; Koratkar N
    J Nanosci Nanotechnol; 2008 Jan; 8(1):436-8. PubMed ID: 18468098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of intertube interactions in double- and triple-walled carbon nanotubes.
    Hirschmann TCh; Araujo PT; Muramatsu H; Rodriguez-Nieva JF; Seifert M; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2014 Feb; 8(2):1330-41. PubMed ID: 24456167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically active substitutional nitrogen impurity in carbon nanotubes.
    Nevidomskyy AH; Csányi G; Payne MC
    Phys Rev Lett; 2003 Sep; 91(10):105502. PubMed ID: 14525489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intertube Aggregation-Dependent Convective Heat Transfer in Vertically Aligned Carbon Nanotube Channels.
    Jeon W; Ahn J; Kim T; Kim SM; Baik S
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50355-50364. PubMed ID: 33136360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes.
    Ilie A; Bendall JS; Nagaoka K; Egger S; Nakayama T; Crampin S
    ACS Nano; 2011 Apr; 5(4):2559-69. PubMed ID: 21370812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant piezoresistivity in aligned carbon nanotube nanocomposite: account for nanotube structural distortion at crossed tunnel junctions.
    Gong S; Zhu ZH
    Nanoscale; 2015 Jan; 7(4):1339-48. PubMed ID: 25492244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes.
    Huang B; Xia Y; Zhao M; Li F; Liu X; Ji Y; Song C
    J Chem Phys; 2005 Feb; 122(8):84708. PubMed ID: 15836078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical and loss spectra of carbon nanotubes: depolarization effects and intertube interactions.
    Marinopoulos AG; Reining L; Rubio A; Vast N
    Phys Rev Lett; 2003 Jul; 91(4):046402. PubMed ID: 12906680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio-based intermolecular carbon-carbon pair potentials for polycyclic aromatic hydrocarbon clusters.
    Lee NK; Kim SK
    J Chem Phys; 2005 Jan; 122(3):31102. PubMed ID: 15740184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional polymeric structures of single-wall carbon nanotubes.
    Lian CS; Wang JT
    J Chem Phys; 2014 May; 140(20):204709. PubMed ID: 24880313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study.
    Manna AK; Pati SK
    Nanoscale; 2010 Jul; 2(7):1190-5. PubMed ID: 20648348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly aligned scalable platinum-decorated single-wall carbon nanotube arrays for nanoscale electrical interconnects.
    Kim YL; Li B; An X; Hahm MG; Chen L; Washington M; Ajayan PM; Nayak SK; Busnaina A; Kar S; Jung YJ
    ACS Nano; 2009 Sep; 3(9):2818-26. PubMed ID: 19725514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of iron-oxide filled carbon nanotubes with gas molecules.
    Bevilaqua RC; Cava CE; Zanella I; Salvatierra RV; Zarbin AJ; Roman LS; Fagan SB
    Phys Chem Chem Phys; 2013 Sep; 15(34):14340-6. PubMed ID: 23877165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement of single-walled carbon nanotube bundles by intertube bridging.
    Kis A; Csányi G; Salvetat JP; Lee TN; Couteau E; Kulik AJ; Benoit W; Brugger J; Forró L
    Nat Mater; 2004 Mar; 3(3):153-7. PubMed ID: 14991016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural deformation and intertube conductance of crossed carbon nanotube junctions.
    Yoon YG; Mazzoni MS; Choi HJ; Ihm J; Louie SG
    Phys Rev Lett; 2001 Jan; 86(4):688-91. PubMed ID: 11177913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexagonal Boron Nitride Coated Carbon Nanotubes: Interlayer Polarization Improved Field Emission.
    Chang HC; Tsai HJ; Lin WY; Chu YC; Hsu WK
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14456-62. PubMed ID: 26070100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.