BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2610254)

  • 1. Ion microprobe analysis of bone surface elements: effects of 1,25(OH)2D3.
    Bushinsky DA; Chabala JM; Levi-Setti R
    Am J Physiol; 1989 Dec; 257(6 Pt 1):E815-22. PubMed ID: 2610254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion microprobe analysis of mouse calvariae in vitro: evidence for a "bone membrane".
    Bushinsky DA; Chabala JM; Levi-Setti R
    Am J Physiol; 1989 Jan; 256(1 Pt 1):E152-8. PubMed ID: 2912140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aluminum on bone surface ion composition.
    Bushinsky DA; Sprague SM; Hallegot P; Girod C; Chabala JM; Levi-Setti R
    J Bone Miner Res; 1995 Dec; 10(12):1988-97. PubMed ID: 8619380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of metabolic acidosis on the potassium content of bone.
    Bushinsky DA; Gavrilov K; Chabala JM; Featherstone JD; Levi-Setti R
    J Bone Miner Res; 1997 Oct; 12(10):1664-71. PubMed ID: 9333127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion microprobe determination of bone surface elements: effects of reduced medium pH.
    Bushinsky DA; Levi-Setti R; Coe FL
    Am J Physiol; 1986 Jun; 250(6 Pt 2):F1090-7. PubMed ID: 3717349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration in surface ion composition of cultured bone during metabolic, but not respiratory, acidosis.
    Chabala JM; Levi-Setti R; Bushinsky DA
    Am J Physiol; 1991 Jul; 261(1 Pt 2):F76-84. PubMed ID: 1858906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of osteoclastic resorption on bone surface ion composition.
    Bushinsky DA; Gavrilov K; Stathopoulos VM; Krieger NS; Chabala JM; Levi-Setti R
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1025-31. PubMed ID: 8897806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of organic material to the ion composition of bone.
    Bushinsky DA; Gavrilov KL; Chabala JM; Levi-Setti R
    J Bone Miner Res; 2000 Oct; 15(10):2026-32. PubMed ID: 11028457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular contribution to pH-mediated calcium flux in neonatal mouse calvariae.
    Bushinsky DA; Goldring JM; Coe FL
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F785-9. PubMed ID: 3839112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical effects of acidosis on bone calcium flux and surface ion composition.
    Bushinsky DA; Wolbach W; Sessler NE; Mogilevsky R; Levi-Setti R
    J Bone Miner Res; 1993 Jan; 8(1):93-102. PubMed ID: 8427052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of in vitro and in vivo 44Ca labeling of bone by scanning ion microprobe.
    Bushinsky DA; Chabala JM; Levi-Setti R
    Am J Physiol; 1990 Oct; 259(4 Pt 1):E586-92. PubMed ID: 2221059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of COX-2 mediates acid-induced bone calcium efflux in vitro.
    Krieger NS; Frick KK; LaPlante Strutz K; Michalenka A; Bushinsky DA
    J Bone Miner Res; 2007 Jun; 22(6):907-17. PubMed ID: 17352658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased sensitivity to 1,25(OH)2D3 in bone from genetic hypercalciuric rats.
    Krieger NS; Stathopoulos VM; Bushinsky DA
    Am J Physiol; 1996 Jul; 271(1 Pt 1):C130-5. PubMed ID: 8760038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of vitamin D deprivation and 1,25-dihydroxyvitamin D3 treatment on ion release from rat tibiae in vitro.
    Ramp WK; Toverud SU; Boass A
    Bone Miner; 1986 Feb; 1(1):1-13. PubMed ID: 3508714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparative study of the effect of 1,25 dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 on calcium homeostasis and bone tissue state in rats during hypokinesia].
    Sergeev IN; Blazheevich NV; Kaplanskiĭ AS; Shvets VN; Belakovskiĭ MS
    Vopr Med Khim; 1987; 33(1):100-7. PubMed ID: 3495067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of osteocalcin production and bone resorption by 1,25-dihydroxyvitamin D3 in mouse long bones: interaction with the bone-derived growth factors TGF-beta and IGF-I.
    Staal A; Geertsma-Kleinekoort WM; Van Den Bemd GJ; Buurman CJ; Birkenhäger JC; Pols HA; Van Leeuwen JP
    J Bone Miner Res; 1998 Jan; 13(1):36-43. PubMed ID: 9443788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of hormonal regulation of osteocalcin synthesis in cultured fetal rat calvariae.
    Lian JB; Coutts M; Canalis E
    J Biol Chem; 1985 Jul; 260(15):8706-10. PubMed ID: 3894347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1,25-dihydroxyvitamin D3 inhibits Na(+)-H+ exchange by stimulating membrane phosphoinositide turnover and increasing cytosolic calcium in CaCo-2 cells.
    Wali RK; Baum CL; Bolt MJ; Brasitus TA; Sitrin MD
    Endocrinology; 1992 Sep; 131(3):1125-33. PubMed ID: 1324151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of 1,25-dihydroxyvitamin D3 on bone resorption and 45Ca2+ efflux in bone cells].
    Rebut-Bonneton C; Ly SY
    C R Acad Sci III; 1985; 300(6):213-6. PubMed ID: 3919894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic acidosis-induced alteration in bone bicarbonate and phosphate.
    Bushinsky DA; Smith SB; Gavrilov KL; Gavrilov LF; Li J; Levi-Setti R
    Am J Physiol Renal Physiol; 2003 Sep; 285(3):F532-9. PubMed ID: 12759230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.