These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 26103000)
1. A novel satellite DNA sequence in the Peromyscus genome (PMSat): Evolution via copy number fluctuation. Louzada S; Vieira-da-Silva A; Mendes-da-Silva A; Kubickova S; Rubes J; Adega F; Chaves R Mol Phylogenet Evol; 2015 Nov; 92():193-203. PubMed ID: 26103000 [TBL] [Abstract][Full Text] [Related]
2. Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Louzada S; Paço A; Kubickova S; Adega F; Guedes-Pinto H; Rubes J; Chaves R Micron; 2008 Dec; 39(8):1149-55. PubMed ID: 18602266 [TBL] [Abstract][Full Text] [Related]
3. A centromere satellite concomitant with extensive karyotypic diversity across the Peromyscus genus defies predictions of molecular drive. Smalec BM; Heider TN; Flynn BL; O'Neill RJ Chromosome Res; 2019 Sep; 27(3):237-252. PubMed ID: 30771198 [TBL] [Abstract][Full Text] [Related]
4. A High-Resolution Comparative Chromosome Map of Cricetus cricetus and Peromyscus eremicus Reveals the Involvement of Constitutive Heterochromatin in Breakpoint Regions. Vieira-da-Silva A; Louzada S; Adega F; Chaves R Cytogenet Genome Res; 2015; 145(1):59-67. PubMed ID: 25999143 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary story of a satellite DNA from Phodopus sungorus (Rodentia, Cricetidae). Paço A; Adega F; Meštrović N; Plohl M; Chaves R Genome Biol Evol; 2014 Oct; 6(10):2944-55. PubMed ID: 25336681 [TBL] [Abstract][Full Text] [Related]
6. Satellite DNA evolution. Plohl M; Meštrović N; Mravinac B Genome Dyn; 2012; 7():126-52. PubMed ID: 22759817 [TBL] [Abstract][Full Text] [Related]
7. Intragenomic movement and concerted evolution of satellite DNA in Peromyscus: evidence from in situ hybridization. Hamilton MJ; Hong G; Wichman HA Cytogenet Cell Genet; 1992; 60(1):40-4. PubMed ID: 1582258 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary dynamics of satellite DNA in species of the Genus Formica (Hymenoptera, Formicidae). Lorite P; Carrillo JA; Tinaut A; Palomeque T Gene; 2004 May; 332():159-68. PubMed ID: 15145065 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of two satellite DNAs in some Iberian rock lizards (Squamata, Lacertidae). Giovannotti M; Rojo V; Nisi Cerioni P; González-Tizón A; Martínez-Lage A; Splendiani A; Naveira H; Ruggeri P; Arribas Ó; Olmo E; Caputo Barucchi V J Exp Zool B Mol Dev Evol; 2014 Jan; 322(1):13-26. PubMed ID: 24014193 [TBL] [Abstract][Full Text] [Related]
10. Hidden heterochromatin: Characterization in the Rodentia species Cricetus cricetus, Peromyscus eremicus (Cricetidae) and Praomys tullbergi (Muridae). Paço A; Adega F; Guedes-Pinto H; Chaves R Genet Mol Biol; 2009 Jan; 32(1):58-68. PubMed ID: 21637647 [TBL] [Abstract][Full Text] [Related]
11. Preservation and high sequence conservation of satellite DNAs suggest functional constraints. Mravinac B; Plohl M; Ugarković D J Mol Evol; 2005 Oct; 61(4):542-50. PubMed ID: 16155746 [TBL] [Abstract][Full Text] [Related]
12. New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): evolutionary pathways and phylogenetic impact. Ciobanu D; Grechko VV; Darevsky IS; Kramerov DA J Exp Zool B Mol Dev Evol; 2004 Nov; 302(6):505-16. PubMed ID: 15390352 [TBL] [Abstract][Full Text] [Related]
13. Evolution of low-copy number and major satellite DNA sequences coexisting in two Pimelia species-groups (Coleoptera). Bruvo B; Pons J; Ugarković D; Juan C; Petitpierre E; Plohl M Gene; 2003 Jul; 312():85-94. PubMed ID: 12909343 [TBL] [Abstract][Full Text] [Related]
14. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA. Feliciello I; Picariello O; Chinali G Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734 [TBL] [Abstract][Full Text] [Related]
15. Evolution of ancient satellite DNAs in sturgeon genomes. Robles F; de la Herrán R; Ludwig A; Ruiz Rejón C; Ruiz Rejón M; Garrido-Ramos MA Gene; 2004 Aug; 338(1):133-42. PubMed ID: 15302414 [TBL] [Abstract][Full Text] [Related]
16. Evolution of satellite DNAs from the genus Palorus--experimental evidence for the "library" hypothesis. Mestrović N; Plohl M; Mravinac B; Ugarković D Mol Biol Evol; 1998 Aug; 15(8):1062-8. PubMed ID: 9718733 [TBL] [Abstract][Full Text] [Related]
17. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Tek AL; Song J; Macas J; Jiang J Genetics; 2005 Jul; 170(3):1231-8. PubMed ID: 15911575 [TBL] [Abstract][Full Text] [Related]
18. Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives. Vicari MR; Nogaroto V; Noleto RB; Cestari MM; Cioffi MB; Almeida MC; Moreira-Filho O; Bertollo LA; Artoni RF J Fish Biol; 2010 Apr; 76(5):1094-116. PubMed ID: 20409164 [TBL] [Abstract][Full Text] [Related]
19. Sequence, Chromatin and Evolution of Satellite DNA. Thakur J; Packiaraj J; Henikoff S Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33919233 [TBL] [Abstract][Full Text] [Related]
20. Effect of location, organization, and repeat-copy number in satellite-DNA evolution. Navajas-Pérez R; Quesada del Bosque ME; Garrido-Ramos MA Mol Genet Genomics; 2009 Oct; 282(4):395-406. PubMed ID: 19653004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]