BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3287 related articles for article (PubMed ID: 26103058)

  • 1. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts.
    Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J
    Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts.
    Rodriguez JA; Hanson JC; Stacchiola D; Senanayake SD
    Phys Chem Chem Phys; 2013 Aug; 15(29):12004-25. PubMed ID: 23660768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO₂.
    Graciani J; Mudiyanselage K; Xu F; Baber AE; Evans J; Senanayake SD; Stacchiola DJ; Liu P; Hrbek J; Fernández Sanz J; Rodriguez JA
    Science; 2014 Aug; 345(6196):546-50. PubMed ID: 25082699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold, copper, and platinum nanoparticles dispersed on CeO(x)/TiO(2)(110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level.
    Park JB; Graciani J; Evans J; Stacchiola D; Senanayake SD; Barrio L; Liu P; Fdez Sanz J; Hrbek J; Rodriguez JA
    J Am Chem Soc; 2010 Jan; 132(1):356-63. PubMed ID: 19994897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopattering in CeOx/Cu(111): A New Type of Surface Reconstruction and Enhancement of Catalytic Activity.
    Senanayake SD; Sadowski JT; Evans J; Kundu S; Agnoli S; Yang F; Stacchiola D; Flege JI; Hrbek J; Rodriguez JA
    J Phys Chem Lett; 2012 Apr; 3(7):839-43. PubMed ID: 26286407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenation of CO
    Palomino RM; Ramírez PJ; Liu Z; Hamlyn R; Waluyo I; Mahapatra M; Orozco I; Hunt A; Simonovis JP; Senanayake SD; Rodriguez JA
    J Phys Chem B; 2018 Jan; 122(2):794-800. PubMed ID: 28825484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CeO
    Li Z; Wang M; Jia Y; Du R; Li T; Zheng Y; Chen M; Qiu Y; Yan K; Zhao WW; Wang P; Waterhouse GIN; Dai S; Zhao Y; Chen G
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31584-31594. PubMed ID: 37339248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction.
    Rodriguez JA; Ma S; Liu P; Hrbek J; Evans J; Pérez M
    Science; 2007 Dec; 318(5857):1757-60. PubMed ID: 18079397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO
    Rodriguez JA; Grinter DC; Liu Z; Palomino RM; Senanayake SD
    Chem Soc Rev; 2017 Apr; 46(7):1824-1841. PubMed ID: 28210734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of catalytically active Cu⁺ surface sites on titanium-copper mixed-oxide films.
    Baber AE; Yang X; Kim HY; Mudiyanselage K; Soldemo M; Weissenrieder J; Senanayake SD; Al-Mahboob A; Sadowski JT; Evans J; Rodriguez JA; Liu P; Hoffmann FM; Chen JG; Stacchiola DJ
    Angew Chem Int Ed Engl; 2014 May; 53(21):5336-40. PubMed ID: 24719231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.
    Föttinger K; Rupprechter G
    Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 165.