BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 26103463)

  • 1. Two serine residues in Pseudomonas syringae effector HopZ1a are required for acetyltransferase activity and association with the host co-factor.
    Ma KW; Jiang S; Hawara E; Lee D; Pan S; Coaker G; Song J; Ma W
    New Phytol; 2015 Dec; 208(4):1157-68. PubMed ID: 26103463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana.
    Lewis JD; Abada W; Ma W; Guttman DS; Desveaux D
    J Bacteriol; 2008 Apr; 190(8):2880-91. PubMed ID: 18263728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion.
    Lee AH; Hurley B; Felsensteiner C; Yea C; Ckurshumova W; Bartetzko V; Wang PW; Quach V; Lewis JD; Liu YC; Börnke F; Angers S; Wilde A; Guttman DS; Desveaux D
    PLoS Pathog; 2012 Feb; 8(2):e1002523. PubMed ID: 22319451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein.
    Lewis JD; Wu R; Guttman DS; Desveaux D
    PLoS Genet; 2010 Apr; 6(4):e1000894. PubMed ID: 20368970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying
    Lee AH; Bastedo DP; Youn JY; Lo T; Middleton MA; Kireeva I; Lee JY; Sharifpoor S; Baryshnikova A; Zhang J; Wang PW; Peisajovich SG; Constanzo M; Andrews BJ; Boone CM; Desveaux D; Guttman DS
    G3 (Bethesda); 2019 Feb; 9(2):535-547. PubMed ID: 30573466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a pathogen effector reveals the enzymatic mechanism of a novel acetyltransferase family.
    Zhang ZM; Ma KW; Yuan S; Luo Y; Jiang S; Hawara E; Pan S; Ma W; Song J
    Nat Struct Mol Biol; 2016 Sep; 23(9):847-52. PubMed ID: 27525589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas syringae effector HopZ3 suppresses the bacterial AvrPto1-tomato PTO immune complex via acetylation.
    Jeleńska J; Lee J; Manning AJ; Wolfgeher DJ; Ahn Y; Walters-Marrah G; Lopez IE; Garcia L; McClerklin SA; Michelmore RW; Kron SJ; Greenberg JT
    PLoS Pathog; 2021 Nov; 17(11):e1010017. PubMed ID: 34724007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a.
    Lewis JD; Lee AH; Hassan JA; Wan J; Hurley B; Jhingree JR; Wang PW; Lo T; Youn JY; Guttman DS; Desveaux D
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18722-7. PubMed ID: 24170858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-silico structural analysis of Pseudomonas syringae effector HopZ3 reveals ligand binding activity and virulence function.
    Chakraborty J
    J Plant Res; 2021 May; 134(3):599-611. PubMed ID: 33730245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pseudomonas syringae effector protein HopZ1a suppresses effector-triggered immunity.
    Macho AP; Guevara CM; Tornero P; Ruiz-Albert J; Beuzón CR
    New Phytol; 2010 Sep; 187(4):1018-1033. PubMed ID: 20636323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses.
    Cao FY; Khan M; Taniguchi M; Mirmiran A; Moeder W; Lumba S; Yoshioka K; Desveaux D
    Plant J; 2019 Oct; 100(1):187-198. PubMed ID: 31148337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rise of the undead: pseudokinases as mediators of effector-triggered immunity.
    Lewis JD; Lo T; Bastedo P; Guttman DS; Desveaux D
    Plant Signal Behav; 2014; 9(1):e27563. PubMed ID: 24398910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AvrBsT acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity.
    Cheong MS; Kirik A; Kim JG; Frame K; Kirik V; Mudgett MB
    PLoS Pathog; 2014 Feb; 10(2):e1003952. PubMed ID: 24586161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts.
    Morgan RL; Zhou H; Lehto E; Nguyen N; Bains A; Wang X; Ma W
    Mol Microbiol; 2010 Apr; 76(2):437-55. PubMed ID: 20233307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems.
    Zhou H; Morgan RL; Guttman DS; Ma W
    Mol Plant Microbe Interact; 2009 Feb; 22(2):176-89. PubMed ID: 19132870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis.
    Tasset C; Bernoux M; Jauneau A; Pouzet C; Brière C; Kieffer-Jacquinod S; Rivas S; Marco Y; Deslandes L
    PLoS Pathog; 2010 Nov; 6(11):e1001202. PubMed ID: 21124938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation.
    Kim HS; Desveaux D; Singer AU; Patel P; Sondek J; Dangl JL
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6496-501. PubMed ID: 15845764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity.
    Ma KW; Ma W
    Microbiol Mol Biol Rev; 2016 Dec; 80(4):1011-1027. PubMed ID: 27784797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression.
    Rufián JS; Lucía A; Macho AP; Orozco-Navarrete B; Arroyo-Mateos M; Bejarano ER; Beuzón CR; Ruiz-Albert J
    Front Microbiol; 2015; 6():684. PubMed ID: 26217317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bacterial effector HopZ1a acetylates MKK7 to suppress plant immunity.
    Rufián JS; Rueda-Blanco J; López-Márquez D; Macho AP; Beuzón CR; Ruiz-Albert J
    New Phytol; 2021 Aug; 231(3):1138-1156. PubMed ID: 33960430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.