These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26103621)

  • 21. Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale.
    Sabbadin D; Moro S
    J Chem Inf Model; 2014 Feb; 54(2):372-6. PubMed ID: 24456045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bell-Evans model and steered molecular dynamics in uncovering the dissociation kinetics of ligands targeting G-protein-coupled receptors.
    Akhunzada MJ; Yoon HJ; Deb I; Braka A; Wu S
    Sci Rep; 2022 Sep; 12(1):15972. PubMed ID: 36153364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unbiased Molecular Dynamics of 11 min Timescale Drug Unbinding Reveals Transition State Stabilizing Interactions.
    Lotz SD; Dickson A
    J Am Chem Soc; 2018 Jan; 140(2):618-628. PubMed ID: 29303257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of Drug Binding and Residence Time.
    Bernetti M; Masetti M; Rocchia W; Cavalli A
    Annu Rev Phys Chem; 2019 Jun; 70():143-171. PubMed ID: 30786217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating Drug-Target Residence Time in Kinases through Enhanced Sampling Simulations.
    Gobbo D; Piretti V; Di Martino RMC; Tripathi SK; Giabbai B; Storici P; Demitri N; Girotto S; Decherchi S; Cavalli A
    J Chem Theory Comput; 2019 Aug; 15(8):4646-4659. PubMed ID: 31246463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ensemble-Based Steered Molecular Dynamics Predicts Relative Residence Time of A
    Potterton A; Husseini FS; Southey MWY; Bodkin MJ; Heifetz A; Coveney PV; Townsend-Nicholson A
    J Chem Theory Comput; 2019 May; 15(5):3316-3330. PubMed ID: 30893556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning.
    Amangeldiuly N; Karlov D; Fedorov MV
    J Chem Inf Model; 2020 Dec; 60(12):5946-5956. PubMed ID: 33183000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of water and steric constraints in the kinetics of cavity-ligand unbinding.
    Tiwary P; Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12015-9. PubMed ID: 26371312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bridging molecular docking to membrane molecular dynamics to investigate GPCR-ligand recognition: the human A₂A adenosine receptor as a key study.
    Sabbadin D; Ciancetta A; Moro S
    J Chem Inf Model; 2014 Jan; 54(1):169-83. PubMed ID: 24359090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Supervised Molecular Dynamics Approach to Unbiased Ligand-Protein Unbinding.
    Deganutti G; Moro S; Reynolds CA
    J Chem Inf Model; 2020 Mar; 60(3):1804-1817. PubMed ID: 32126172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations.
    Hu G; Xu S; Wang J
    Chem Biol Drug Des; 2015 Dec; 86(6):1351-9. PubMed ID: 26032728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of Ligand-Protein Dissociation from All-Atom Simulations: Are We There Yet?
    Ribeiro JML; Tsai ST; Pramanik D; Wang Y; Tiwary P
    Biochemistry; 2019 Jan; 58(3):156-165. PubMed ID: 30547565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerating Rare Dissociative Processes in Biomolecules Using Selectively Scaled MD Simulations.
    Deb I; Frank AT
    J Chem Theory Comput; 2019 Nov; 15(11):5817-5828. PubMed ID: 31509413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Path separation of dissipation-corrected targeted molecular dynamics simulations of protein-ligand unbinding.
    Wolf S; Post M; Stock G
    J Chem Phys; 2023 Mar; 158(12):124106. PubMed ID: 37003731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding Residence Time through Scaled Molecular Dynamics: A Prospective Application to hDAAO Inhibitors.
    Bernetti M; Rosini E; Mollica L; Masetti M; Pollegioni L; Recanatini M; Cavalli A
    J Chem Inf Model; 2018 Nov; 58(11):2255-2265. PubMed ID: 30339750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90.
    Riccardi Sirtori F; Caronni D; Colombo M; Dalvit C; Paolucci M; Regazzoni L; Visco C; Fogliatto G
    Eur J Pharm Sci; 2015 Aug; 76():83-94. PubMed ID: 25952103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Residence Time Prediction of Type 1 and 2 Kinase Inhibitors from Unbinding Simulations.
    Braka A; Garnier N; Bonnet P; Aci-Sèche S
    J Chem Inf Model; 2020 Jan; 60(1):342-348. PubMed ID: 31834793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional replica-exchange method for predicting protein-ligand binding structures.
    Kokubo H; Tanaka T; Okamoto Y
    J Comput Chem; 2013 Nov; 34(30):2601-14. PubMed ID: 24006253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent progress in molecular simulation methods for drug binding kinetics.
    Nunes-Alves A; Kokh DB; Wade RC
    Curr Opin Struct Biol; 2020 Oct; 64():126-133. PubMed ID: 32771530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.