BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26103934)

  • 21. Structural changes in the vacuole and cytoskeleton are key to development of the two cytoplasmic domains supporting single-cell C(4) photosynthesis in Bienertia sinuspersici.
    Park J; Knoblauch M; Okita TW; Edwards GE
    Planta; 2009 Jan; 229(2):369-82. PubMed ID: 18972128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The pulvinus endodermal cells and their relation to leaf movement in legumes of the Brazilian cerrado.
    Rodrigues TM; Machado SR
    Plant Biol (Stuttg); 2007 Jul; 9(4):469-77. PubMed ID: 17301934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanoreceptor Cells on the Tertiary Pulvini of Mimosa pudica L.
    Visnovitz T; Világi I; Varró P; Kristóf Z
    Plant Signal Behav; 2007 Nov; 2(6):462-6. PubMed ID: 19517007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vacuolar transporters in their physiological context.
    Martinoia E; Meyer S; De Angeli A; Nagy R
    Annu Rev Plant Biol; 2012; 63():183-213. PubMed ID: 22404463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological degradation of tannins in sericea lespedeza (Lespedeza cuneata) by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus analyzed by solid-state 13C nuclear magnetic resonance spectroscopy.
    Gamble GR; Akin DE; Makkar HP; Becker K
    Appl Environ Microbiol; 1996 Oct; 62(10):3600-4. PubMed ID: 8837414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new insight into the mechanism for cytosolic lipid droplet degradation in senescent leaves.
    Zhang C; Qu Y; Lian Y; Chapman M; Chapman N; Xin J; Xin H; Liu L
    Physiol Plant; 2020 Apr; 168(4):835-844. PubMed ID: 31639226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Actin dynamics mediates the changes of calcium level during the pulvinus movement of Mimosa pudica.
    Yao H; Xu Q; Yuan M
    Plant Signal Behav; 2008 Nov; 3(11):954-60. PubMed ID: 19513198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Condensed tannin and saponin content of Vigna unguiculata (L.) Walp, Desmodium uncinatum, Stylosanthes guianensis and Stylosanthes scabra grown in Zimbabwe.
    Baloyi JJ; Ngongoni NT; Topps JH; Acamovic T; Hamudikuwanda H
    Trop Anim Health Prod; 2001 Feb; 33(1):57-66. PubMed ID: 11234193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of ribulose-bisphosphate carboxylase by vacuolar enzymes of senescing French bean leaves: immunocytochemical and ultrastructural observations.
    Minamikawa T; Toyooka K; Okamoto T; Hara-Nishimura I; Nishimura M
    Protoplasma; 2001; 218(3-4):144-53. PubMed ID: 11770431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of Vacuoles from the Leaves of the Medicinal Plant Catharanthus roseus.
    Carqueijeiro I; Noronha H; Bettencourt S; Guedes JG; Duarte P; Gerós H; Sottomayor M
    Methods Mol Biol; 2018; 1789():81-99. PubMed ID: 29916073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultradian rhythms in Desmodium.
    Engelmann W; Antkowiak B
    Chronobiol Int; 1998 Jul; 15(4):293-307. PubMed ID: 9706408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Condensed and Hydrolyzable Tannins on Rumen Metabolism with Emphasis on the Biohydrogenation of Unsaturated Fatty Acids.
    Costa M; Alves SP; Cappucci A; Cook SR; Duarte A; Caldeira RM; McAllister TA; Bessa RJB
    J Agric Food Chem; 2018 Apr; 66(13):3367-3377. PubMed ID: 29494146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responses of Lotus corniculatus to environmental change 3: The sensitivity of phenolic accumulation to growth temperature and light intensity and effects on tissue digestibility.
    Morris P; Carter EB; Hauck B; Lanot A; Theodorou MK; Allison G
    Planta; 2021 Jan; 253(2):35. PubMed ID: 33459906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auxinic herbicide conjugates with an α-amino acid function: Structural requirements for biological activity on motor cells.
    Roblin G; Bonnemain JL; Chollet JF
    Plant Physiol Biochem; 2020 Oct; 155():444-454. PubMed ID: 32818792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant Vacuoles.
    Shimada T; Takagi J; Ichino T; Shirakawa M; Hara-Nishimura I
    Annu Rev Plant Biol; 2018 Apr; 69():123-145. PubMed ID: 29561663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of Ca2+ in Vacuole Degradation Caused by a Rapid Temperature Decrease in Saintpaulia Palisade Cells: A Case of Gene Expression Analysis in a Specialized Small Tissue.
    Ohnishi M; Kadohama N; Suzuki Y; Kajiyama T; Shichijo C; Ishizaki K; Fukaki H; Iida H; Kambara H; Mimura T
    Plant Cell Physiol; 2015 Jul; 56(7):1297-305. PubMed ID: 25941231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of an Antirrhinum dihydroflavonol reductase gene results in changes in condensed tannin structure and accumulation in root cultures of Lotus corniculatus (bird's foot trefoil).
    Bavage AD; Davies IG; Robbins MP; Morris P
    Plant Mol Biol; 1997 Nov; 35(4):443-58. PubMed ID: 9349268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of two strategies to modify the hydroxylation of condensed tannin polymers in Lotus corniculatus L.
    Robbins MP; Bavage AD; Allison G; Davies T; Hauck B; Morris P
    Phytochemistry; 2005 May; 66(9):991-9. PubMed ID: 15896367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does Phoradendron perrottetii (mistletoe) alter polyphenols levels of Tapirira guianensis (host plant)?
    Furlan CM; Anselmo-Moreira F; Teixeira-Costa L; Ceccantini G; Salminen JP
    Plant Physiol Biochem; 2019 Mar; 136():222-229. PubMed ID: 30703634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. Rates of body and wool growth.
    Barry TN
    Br J Nutr; 1985 Jul; 54(1):211-7. PubMed ID: 4063306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.