These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26104448)

  • 1. Programmed Genome Rearrangements in Tetrahymena.
    Yao MC; Chao JL; Cheng CY
    Microbiol Spectr; 2014 Dec; 2(6):. PubMed ID: 26104448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmed Rearrangement in Ciliates: Paramecium.
    Betermier M; Duharcourt S
    Microbiol Spectr; 2014 Dec; 2(6):. PubMed ID: 26104450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposon domestication versus mutualism in ciliate genome rearrangements.
    Vogt A; Goldman AD; Mochizuki K; Landweber LF
    PLoS Genet; 2013; 9(8):e1003659. PubMed ID: 23935529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements.
    Yao MC; Chao JL
    Annu Rev Genet; 2005; 39():537-59. PubMed ID: 16285871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia.
    Baudry C; Malinsky S; Restituito M; Kapusta A; Rosa S; Meyer E; Bétermier M
    Genes Dev; 2009 Nov; 23(21):2478-83. PubMed ID: 19884254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whats, hows and whys of programmed DNA elimination in
    Noto T; Mochizuki K
    Open Biol; 2017 Oct; 7(10):. PubMed ID: 29021213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmed DNA elimination in Tetrahymena: a small RNA-mediated genome surveillance mechanism.
    Kataoka K; Mochizuki K
    Adv Exp Med Biol; 2011; 722():156-73. PubMed ID: 21915788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A domesticated PiggyBac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in Tetrahymena.
    Vogt A; Mochizuki K
    PLoS Genet; 2013; 9(12):e1004032. PubMed ID: 24348275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed DNA deletions in Tetrahymena: mechanisms and implications.
    Yao MC
    Trends Genet; 1996 Jan; 12(1):26-30. PubMed ID: 8741857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila.
    Cheng CY; Young JM; Lin CG; Chao JL; Malik HS; Yao MC
    Genes Dev; 2016 Dec; 30(24):2724-2736. PubMed ID: 28087716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia.
    Marmignon A; Bischerour J; Silve A; Fojcik C; Dubois E; Arnaiz O; Kapusta A; Malinsky S; Bétermier M
    PLoS Genet; 2014 Aug; 10(8):e1004552. PubMed ID: 25166013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA elimination in ciliates: transposon domestication and genome surveillance.
    Chalker DL; Yao MC
    Annu Rev Genet; 2011; 45():227-46. PubMed ID: 21910632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic distributions of long double-stranded RNA in Tetrahymena during nuclear development and genome rearrangements.
    Woo TT; Chao JL; Yao MC
    J Cell Sci; 2016 Mar; 129(5):1046-58. PubMed ID: 26769902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmed DNA deletion as an RNA-guided system of genome defense.
    Yao MC; Fuller P; Xi X
    Science; 2003 Jun; 300(5625):1581-4. PubMed ID: 12791996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmentally programmed, RNA-directed genome rearrangement in Tetrahymena.
    Mochizuki K
    Dev Growth Differ; 2012 Jan; 54(1):108-19. PubMed ID: 22103557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence?
    Coyne RS; Lhuillier-Akakpo M; Duharcourt S
    Biol Cell; 2012 Jun; 104(6):309-25. PubMed ID: 22352444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmed Genome Rearrangements in the Ciliate Oxytricha.
    Yerlici VT; Landweber LF
    Microbiol Spectr; 2014 Dec; 2(6):. PubMed ID: 26104449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative Regulators of an RNAi-Heterochromatin Positive Feedback Loop Safeguard Somatic Genome Integrity in Tetrahymena.
    Suhren JH; Noto T; Kataoka K; Gao S; Liu Y; Mochizuki K
    Cell Rep; 2017 Mar; 18(10):2494-2507. PubMed ID: 28273462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The germ line limited M element of Tetrahymena is targeted for elimination from the somatic genome by a homology-dependent mechanism.
    Kowalczyk CA; Anderson AM; Arce-Larreta M; Chalker DL
    Nucleic Acids Res; 2006; 34(20):5778-89. PubMed ID: 17053100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring.
    Coyne RS; Chalker DL; Yao MC
    Annu Rev Genet; 1996; 30():557-78. PubMed ID: 8982465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.