These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 26105034)

  • 1. An optimal control problem for ovine brucellosis with culling.
    Nannyonga B; Mwanga GG; Luboobi LS
    J Biol Dyn; 2015; 9():198-214. PubMed ID: 26105034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for ovine brucellosis incorporating direct and indirect transmission.
    Aïnseba B; Benosman C; Magal P
    J Biol Dyn; 2010 Jan; 4(1):2-11. PubMed ID: 22881067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China.
    Zhou L; Fan M; Hou Q; Jin Z; Sun X
    Math Biosci Eng; 2018 Apr; 15(2):543-567. PubMed ID: 29161849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the dynamics of brucellosis infection in bison population with vertical transmission and culling.
    Lolika PO; Modnak C; Mushayabasa S
    Math Biosci; 2018 Nov; 305():42-54. PubMed ID: 30138637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China.
    Li M; Sun G; Zhang J; Jin Z; Sun X; Wang Y; Huang B; Zheng Y
    Math Biosci Eng; 2014 Oct; 11(5):1115-37. PubMed ID: 25347802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China.
    Hou Q; Sun X; Zhang J; Liu Y; Wang Y; Jin Z
    Math Biosci; 2013 Mar; 242(1):51-8. PubMed ID: 23313258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A network control theory approach to modeling and optimal control of zoonoses: case study of brucellosis transmission in sub-Saharan Africa.
    Roy S; McElwain TF; Wan Y
    PLoS Negl Trop Dis; 2011 Oct; 5(10):e1259. PubMed ID: 22022621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment and simulation of the implementation of brucellosis control programme in an endemic area of the Middle East.
    Hegazy YM; Ridler AL; Guitian FJ
    Epidemiol Infect; 2009 Oct; 137(10):1436-48. PubMed ID: 19288957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Clinical and epizootiological aspects of bovine, caprine, and ovine brucellosis in Greece].
    Karvounaris PA
    Dev Biol Stand; 1976; 31():254-64. PubMed ID: 1261740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-Based Evaluation of Strategies to Control Brucellosis in China.
    Li MT; Sun GQ; Zhang WY; Jin Z
    Int J Environ Res Public Health; 2017 Mar; 14(3):. PubMed ID: 28287496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymptotic analysis of endemic equilibrium to a brucellosis model.
    Li MT; Pei X; Zhang J; Li L
    Math Biosci Eng; 2019 Jun; 16(5):5836-5850. PubMed ID: 31499740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A brucellosis disease control strategy for the Kakheti region of the country of Georgia: an agent-based model.
    Havas KA; Boone RB; Hill AE; Salman MD
    Zoonoses Public Health; 2014 Jun; 61(4):260-70. PubMed ID: 23879523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of animal-human brucellosis transmission in Mongolia.
    Zinsstag J; Roth F; Orkhon D; Chimed-Ochir G; Nansalmaa M; Kolar J; Vounatsou P
    Prev Vet Med; 2005 Jun; 69(1-2):77-95. PubMed ID: 15899298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global dynamics of a multi-stage brucellosis model with distributed delays and indirect transmission.
    Hou Q; Qin HY
    Math Biosci Eng; 2019 Apr; 16(4):3111-3129. PubMed ID: 31137253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifurcation analysis of a sheep brucellosis model with testing and saturated culling rate.
    Nie Y; Sun X; Hu H; Hou Q
    Math Biosci Eng; 2023 Jan; 20(1):1519-1537. PubMed ID: 36650822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreasing prevalence of brucellosis in red deer through efforts to control disease in livestock.
    Serrano E; Cross PC; Beneria M; Ficapal A; Curia J; Marco X; Lavín S; Marco I
    Epidemiol Infect; 2011 Oct; 139(10):1626-30. PubMed ID: 21676351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brucellosis as a world problem.
    Abdussalam M; Fein DA
    Dev Biol Stand; 1976; 31():9-23. PubMed ID: 1261753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic analysis of sheep Brucellosis model with environmental infection pathways.
    Yue Z; Mu Y; Yu K
    Math Biosci Eng; 2023 May; 20(7):11688-11712. PubMed ID: 37501416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission of Brucella canis by contact exposure.
    Carmichael LE; Joubert JC
    Cornell Vet; 1988 Jan; 78(1):63-73. PubMed ID: 3335131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk factors for human brucellosis in northern Jordan.
    Abo-Shehada MN; Abu-Halaweh M
    East Mediterr Health J; 2013 Feb; 19(2):135-40. PubMed ID: 23516823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.