These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26105137)

  • 1. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains.
    Weed MR; Bookbinder M; Polino J; Keavy D; Cardinal RN; Simmermacher-Mayer J; Cometa FN; King D; Thangathirupathy S; Macor JE; Bristow LJ
    Neuropsychopharmacology; 2016 Jan; 41(2):568-77. PubMed ID: 26105137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The qEEG Signature of Selective NMDA NR2B Negative Allosteric Modulators; A Potential Translational Biomarker for Drug Development.
    Keavy D; Bristow LJ; Sivarao DV; Batchelder M; King D; Thangathirupathy S; Macor JE; Weed MR
    PLoS One; 2016; 11(4):e0152729. PubMed ID: 27035340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociable effects of NR2A and NR2B NMDA receptor antagonism on cognitive flexibility but not pattern separation.
    Kumar G; Olley J; Steckler T; Talpos J
    Psychopharmacology (Berl); 2015 Nov; 232(21-22):3991-4003. PubMed ID: 26184010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for improved performance in cognitive tasks following selective NR2B NMDA receptor antagonist pre-treatment in the rat.
    Higgins GA; Ballard TM; Enderlin M; Haman M; Kemp JA
    Psychopharmacology (Berl); 2005 Apr; 179(1):85-98. PubMed ID: 15759152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective cognitive impairments associated with NMDA receptor blockade in humans.
    Rowland LM; Astur RS; Jung RE; Bustillo JR; Lauriello J; Yeo RA
    Neuropsychopharmacology; 2005 Mar; 30(3):633-9. PubMed ID: 15647751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the NR2B-selective NMDA receptor antagonist Ro 63-1908 on rodent behaviour: evidence for an involvement of NR2B NMDA receptors in response inhibition.
    Higgins GA; Ballard TM; Huwyler J; Kemp JA; Gill R
    Neuropharmacology; 2003 Mar; 44(3):324-41. PubMed ID: 12604092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sub-anesthetic doses of ketamine on rats' spatial and non-spatial recognition memory.
    Pitsikas N; Boultadakis A; Sakellaridis N
    Neuroscience; 2008 Jun; 154(2):454-60. PubMed ID: 18472348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential muscarinic and NMDA contributions to visuo-spatial paired-associate learning in rhesus monkeys.
    Taffe MA; Weed MR; Gutierrez T; Davis SA; Gold LH
    Psychopharmacology (Berl); 2002 Mar; 160(3):253-62. PubMed ID: 11889494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior.
    Gass N; Becker R; Sack M; Schwarz AJ; Reinwald J; Cosa-Linan A; Zheng L; von Hohenberg CC; Inta D; Meyer-Lindenberg A; Weber-Fahr W; Gass P; Sartorius A
    Psychopharmacology (Berl); 2018 Apr; 235(4):1055-1068. PubMed ID: 29305627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of NMDAR antagonists in the tetrabenazine test for antidepressants: comparison with the tail suspension test.
    Skolnick P; Kos T; Czekaj J; Popik P
    Acta Neuropsychiatr; 2015 Aug; 27(4):228-34. PubMed ID: 25858023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ketamine Alters Lateral Prefrontal Oscillations in a Rule-Based Working Memory Task.
    Ma L; Skoblenick K; Johnston K; Everling S
    J Neurosci; 2018 Mar; 38(10):2482-2494. PubMed ID: 29437929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive and subjective acute dose effects of intramuscular ketamine in healthy adults.
    Lofwall MR; Griffiths RR; Mintzer MZ
    Exp Clin Psychopharmacol; 2006 Nov; 14(4):439-49. PubMed ID: 17115871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A within-subject cognitive battery in the rat: differential effects of NMDA receptor antagonists.
    Dix S; Gilmour G; Potts S; Smith JW; Tricklebank M
    Psychopharmacology (Berl); 2010 Oct; 212(2):227-42. PubMed ID: 20676612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Effects of an NR2B NAM and Ketamine on Synaptic Potentiation and Gamma Synchrony: Relevance to Rapid-Onset Antidepressant Efficacy.
    Nagy D; Stoiljkovic M; Menniti FS; Hajós M
    Neuropsychopharmacology; 2016 May; 41(6):1486-94. PubMed ID: 26404843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the NMDA antagonist ketamine on task-switching performance: evidence for specific impairments of executive control.
    Stoet G; Snyder LH
    Neuropsychopharmacology; 2006 Aug; 31(8):1675-81. PubMed ID: 16205773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5.
    Steele RJ; Morris RG
    Hippocampus; 1999; 9(2):118-36. PubMed ID: 10226773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists.
    Anand A; Charney DS; Oren DA; Berman RM; Hu XS; Cappiello A; Krystal JH
    Arch Gen Psychiatry; 2000 Mar; 57(3):270-6. PubMed ID: 10711913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia.
    Umbricht D; Schmid L; Koller R; Vollenweider FX; Hell D; Javitt DC
    Arch Gen Psychiatry; 2000 Dec; 57(12):1139-47. PubMed ID: 11115327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of acute NR2B antagonist treatment on long-term potentiation in the rat hippocampus.
    Graef JD; Newberry K; Newton A; Pieschl R; Shields E; Luan FN; Simmermacher J; Luchetti D; Schaeffer E; Li YW; Kiss L; Bristow LJ
    Brain Res; 2015 Jun; 1609():31-9. PubMed ID: 25796435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological characterization of Ro 63-1908 (1-[2-(4-hydroxy-phenoxy)-ethyl]-4-(4-methyl-benzyl)-piperidin-4-ol), a novel subtype-selective N-methyl-D-aspartate antagonist.
    Gill R; Alanine A; Bourson A; Buttelmann B; Fischer G; Heitz MP; Kew JN; Levet-Trafit B; Lorez HP; Malherbe P; Miss MT; Mutel V; Pinard E; Roever S; Schmitt M; Trube G; Wybrecht R; Wyler R; Kemp JA
    J Pharmacol Exp Ther; 2002 Sep; 302(3):940-8. PubMed ID: 12183650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.