BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26105513)

  • 1. Multifunctional gold nanoparticles as signal transducers for fabrication of 1:2 molecular demultiplexer.
    He Y; Yu H
    Anal Bioanal Chem; 2015 Sep; 407(22):6741-6. PubMed ID: 26105513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free, sensitivity detection of fibrillar fibrin using gold nanoparticle-based chemiluminescence system.
    Zhang Y; Liu J; Liu T; Li H; Xue Q; Li R; Wang L; Yue Q; Wang S
    Biosens Bioelectron; 2016 Mar; 77():111-5. PubMed ID: 26397422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced effect of aggregated gold nanoparticles on luminol chemiluminescence system and its analytical application.
    Qi Y; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():1-6. PubMed ID: 23602952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators.
    Dmitriev A; Pakizeh T; Käll M; Sutherland DS
    Small; 2007 Feb; 3(2):294-9. PubMed ID: 17199248
    [No Abstract]   [Full Text] [Related]  

  • 5. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline.
    He Y; Peng R
    Nanotechnology; 2014 Nov; 25(45):455502. PubMed ID: 25327146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu(2+) complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion.
    Li F; Liu Y; Zhuang M; Zhang H; Liu X; Cui H
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18104-11. PubMed ID: 25275558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of halide-induced aggregation of Au nanoparticles into spongelike gold.
    Zhang Z; Li H; Zhang F; Wu Y; Guo Z; Zhou L; Li J
    Langmuir; 2014 Mar; 30(10):2648-59. PubMed ID: 24552456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theophylline detection using an aptamer and DNA-gold nanoparticle conjugates.
    Chávez JL; Lyon W; Kelley-Loughnane N; Stone MO
    Biosens Bioelectron; 2010 Sep; 26(1):23-8. PubMed ID: 20605714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array.
    Yagati AK; Lee T; Min J; Choi JW
    Biosens Bioelectron; 2013 Feb; 40(1):283-90. PubMed ID: 22884649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays.
    Tsai CY; Chang KH; Wu CY; Lee PT
    Opt Express; 2013 Jun; 21(12):14090-6. PubMed ID: 23787599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label free and homogeneous histone sensing based on chemiluminescence resonance energy transfer between lucigenin and gold nanoparticles.
    He Y; Cui H
    Biosens Bioelectron; 2013 Sep; 47():313-7. PubMed ID: 23603126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive homogenous chemiluminescence immunoassay using gold nanoparticles as label.
    Luo J; Cui X; Liu W; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():243-8. PubMed ID: 24835732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system.
    Qi Y; Li B
    Chemistry; 2011 Feb; 17(5):1642-8. PubMed ID: 21268167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step homogeneous non-stripping chemiluminescence metal immunoassay based on catalytic activity of gold nanoparticles.
    Qi Y; Xiu FR; Li B
    Anal Biochem; 2014 Mar; 449():1-8. PubMed ID: 24333251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ.
    Tang Y; Zhang W; Liu J; Zhang L; Huang W; Huo F; Tian D
    Nanoscale; 2015 Apr; 7(14):6039-44. PubMed ID: 25766647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The new approach for captopril detection employing triangular gold nanoparticles-catalyzed luminol chemiluminescence.
    Chen Q; Bai S; Lu C
    Talanta; 2012 Jan; 89():142-8. PubMed ID: 22284472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron(III)-quantity-dependent aggregation-dispersion conversion of functionalized gold nanoparticles.
    Bai L; Zhu L; Ang CY; Li X; Wu S; Zeng Y; Ågren H; Zhao Y
    Chemistry; 2014 Apr; 20(14):4032-7. PubMed ID: 24596327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical investigations on ATP-induced aggregation of positive-charged gold nanoparticles.
    Li CM; Li YF; Wang J; Huang CZ
    Talanta; 2010 Jun; 81(4-5):1339-45. PubMed ID: 20441904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.