These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 26105688)

  • 1. Inhibition of ferric ion to oxalate oxidase shed light on the substrate binding site.
    Pang Y; Lan W; Huang X; Zuo G; Liu H; Zhang J
    Biometals; 2015 Oct; 28(5):861-8. PubMed ID: 26105688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative structural modeling and docking studies of oxalate oxidase: Possible implication in enzyme supplementation therapy for urolithiasis.
    Khobragade CN; Beedkar SD; Bodade RG; Vinchurkar AS
    Int J Biol Macromol; 2011 Apr; 48(3):466-73. PubMed ID: 21255608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and spectroscopic studies shed light on the mechanism of oxalate oxidase.
    Opaleye O; Rose RS; Whittaker MM; Woo EJ; Whittaker JW; Pickersgill RW
    J Biol Chem; 2006 Mar; 281(10):6428-33. PubMed ID: 16291738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A closed conformation of Bacillus subtilis oxalate decarboxylase OxdC provides evidence for the true identity of the active site.
    Just VJ; Stevenson CE; Bowater L; Tanner A; Lawson DM; Bornemann S
    J Biol Chem; 2004 May; 279(19):19867-74. PubMed ID: 14871895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isothermal titration calorimetry uncovers substrate promiscuity of bicupin oxalate oxidase from
    Rana H; Moussatche P; Rocha LS; Abdellaoui S; Minteer SD; Moomaw EW
    Biochem Biophys Rep; 2016 Mar; 5():396-400. PubMed ID: 28955847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies on the reaction of isopenicillin N synthase with the truncated substrate analogues delta-(L-alpha-aminoadipoyl)-L-cysteinyl-glycine and delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-alanine.
    Long AJ; Clifton IJ; Roach PL; Baldwin JE; Rutledge PJ; Schofield CJ
    Biochemistry; 2005 May; 44(17):6619-28. PubMed ID: 15850395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burst kinetics and redox transformations of the active site manganese ion in oxalate oxidase: implications for the catalytic mechanism.
    Whittaker MM; Pan HY; Yukl ET; Whittaker JW
    J Biol Chem; 2007 Mar; 282(10):7011-23. PubMed ID: 17210574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
    Horner O; Mouesca JM; Oddou JL; Jeandey C; Nivière V; Mattioli TA; Mathé C; Fontecave M; Maldivi P; Bonville P; Halfen JA; Latour JM
    Biochemistry; 2004 Jul; 43(27):8815-25. PubMed ID: 15236590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane inlet mass spectrometry reveals that Ceriporiopsis subvermispora bicupin oxalate oxidase is inhibited by nitric oxide.
    Moomaw EW; Uberto R; Tu C
    Biochem Biophys Res Commun; 2014 Jul; 450(1):750-4. PubMed ID: 24953692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen peroxide inhibition of bicupin oxalate oxidase.
    Goodwin JM; Rana H; Ndungu J; Chakrabarti G; Moomaw EW
    PLoS One; 2017; 12(5):e0177164. PubMed ID: 28486485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the resting state of oxalate oxidase and oxalate decarboxylase enzymes.
    Scarpellini M; Gätjens J; Martin OJ; Kampf JW; Sherman SE; Pecoraro VL
    Inorg Chem; 2008 May; 47(9):3584-93. PubMed ID: 18399627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New extracellular thermostable oxalate oxidase produced from endophytic Ochrobactrum intermedium CL6: Purification and biochemical characterization.
    Kumar K; Belur PD
    Prep Biochem Biotechnol; 2016 Oct; 46(7):734-9. PubMed ID: 26796139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe(3+)-eta(2)-peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii.
    Mathé C; Nivière V; Houée-Levin C; Mattioli TA
    Biophys Chem; 2006 Jan; 119(1):38-48. PubMed ID: 16084640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity of food phenols with iron and copper ions: binding, dioxygen activation and oxidation mechanisms.
    Nkhili E; Loonis M; Mihai S; El Hajji H; Dangles O
    Food Funct; 2014 Jun; 5(6):1186-202. PubMed ID: 24700074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
    Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U
    J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structures of the Fe(3+) and Zn(2+) derivatives.
    Stillman TJ; Hempstead PD; Artymiuk PJ; Andrews SC; Hudson AJ; Treffry A; Guest JR; Harrison PM
    J Mol Biol; 2001 Mar; 307(2):587-603. PubMed ID: 11254384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropylphosphonic acid epoxidase using 17O-enriched substrates and substrate analogues.
    Yan F; Moon SJ; Liu P; Zhao Z; Lipscomb JD; Liu A; Liu HW
    Biochemistry; 2007 Nov; 46(44):12628-38. PubMed ID: 17927218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases.
    Favia AD; Nobeli I; Glaser F; Thornton JM
    J Mol Biol; 2008 Jan; 375(3):855-74. PubMed ID: 18036612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.