BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

903 related articles for article (PubMed ID: 26106562)

  • 41. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images.
    Simões R; Mönninghoff C; Dlugaj M; Weimar C; Wanke I; van Cappellen van Walsum AM; Slump C
    Magn Reson Imaging; 2013 Sep; 31(7):1182-9. PubMed ID: 23684961
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Seven-Tesla Magnetization Transfer Imaging to Detect Multiple Sclerosis White Matter Lesions.
    Chou IJ; Lim SY; Tanasescu R; Al-Radaideh A; Mougin OE; Tench CR; Whitehouse WP; Gowland PA; Constantinescu CS
    J Neuroimaging; 2018 Mar; 28(2):183-190. PubMed ID: 28944575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age.
    Taso M; Le Troter A; Sdika M; Cohen-Adad J; Arnoux PJ; Guye M; Ranjeva JP; Callot V
    Neuroimage; 2015 Aug; 117():20-8. PubMed ID: 26003856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitivity of portable low-field magnetic resonance imaging for multiple sclerosis lesions.
    Arnold TC; Tu D; Okar SV; Nair G; By S; Kawatra KD; Robert-Fitzgerald TE; Desiderio LM; Schindler MK; Shinohara RT; Reich DS; Stein JM
    Neuroimage Clin; 2022; 35():103101. PubMed ID: 35792417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study.
    Ribaldi F; Altomare D; Jovicich J; Ferrari C; Picco A; Pizzini FB; Soricelli A; Mega A; Ferretti A; Drevelegas A; Bosch B; Müller BW; Marra C; Cavaliere C; Bartrés-Faz D; Nobili F; Alessandrini F; Barkhof F; Gros-Dagnac H; Ranjeva JP; Wiltfang J; Kuijer J; Sein J; Hoffmann KT; Roccatagliata L; Parnetti L; Tsolaki M; Constantinidis M; Aiello M; Salvatore M; Montalti M; Caulo M; Didic M; Bargallo N; Blin O; Rossini PM; Schonknecht P; Floridi P; Payoux P; Visser PJ; Bordet R; Lopes R; Tarducci R; Bombois S; Hensch T; Fiedler U; Richardson JC; Frisoni GB; Marizzoni M
    Magn Reson Imaging; 2021 Feb; 76():108-115. PubMed ID: 33220450
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple sclerosis: hyperintense lesions in the brain on T1-weighted MR images assessed by diffusion tensor imaging.
    Zhou F; Shiroishi M; Gong H; Zee CS
    J Magn Reson Imaging; 2010 Apr; 31(4):789-95. PubMed ID: 20373421
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Patient-specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis.
    Gabr RE; Pednekar AS; Govindarajan KA; Sun X; Riascos RF; Ramírez MG; Hasan KM; Lincoln JA; Nelson F; Wolinsky JS; Narayana PA
    J Magn Reson Imaging; 2017 Aug; 46(2):557-564. PubMed ID: 27869333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatic segmentation of MR brain images of preterm infants using supervised classification.
    Moeskops P; Benders MJ; Chiţ SM; Kersbergen KJ; Groenendaal F; de Vries LS; Viergever MA; Išgum I
    Neuroimage; 2015 Sep; 118():628-41. PubMed ID: 26057591
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging.
    Dadar M; Maranzano J; Misquitta K; Anor CJ; Fonov VS; Tartaglia MC; Carmichael OT; Decarli C; Collins DL;
    Neuroimage; 2017 Aug; 157():233-249. PubMed ID: 28602597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rotation-invariant multi-contrast non-local means for MS lesion segmentation.
    Guizard N; Coupé P; Fonov VS; Manjón JV; Arnold DL; Collins DL
    Neuroimage Clin; 2015; 8():376-89. PubMed ID: 26106563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Model of Population and Subject (MOPS) Intensities With Application to Multiple Sclerosis Lesion Segmentation.
    Tomas-Fernandez X; Warfield SK
    IEEE Trans Med Imaging; 2015 Jun; 34(6):1349-61. PubMed ID: 25616008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A semi-automated measuring system of brain diffusion and perfusion magnetic resonance imaging abnormalities in patients with multiple sclerosis based on the integration of coregistration and tissue segmentation procedures.
    Revenaz A; Ruggeri M; Laganà M; Bergsland N; Groppo E; Rovaris M; Fainardi E
    BMC Med Imaging; 2016 Jan; 16():4. PubMed ID: 26762399
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability.
    Opfer R; Krüger J; Spies L; Ostwaldt AC; Kitzler HH; Schippling S; Buchert R
    Eur Radiol; 2023 Mar; 33(3):1852-1861. PubMed ID: 36264314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A fully automated pipeline for brain structure segmentation in multiple sclerosis.
    González-Villà S; Oliver A; Huo Y; Lladó X; Landman BA
    Neuroimage Clin; 2020; 27():102306. PubMed ID: 32585568
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Validation of White-Matter Lesion Change Detection Methods on a Novel Publicly Available MRI Image Database.
    Lesjak Ž; Pernuš F; Likar B; Špiclin Ž
    Neuroinformatics; 2016 Oct; 14(4):403-20. PubMed ID: 27207310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated segmentation of multiple sclerosis lesions by model outlier detection.
    Van Leemput K; Maes F; Vandermeulen D; Colchester A; Suetens P
    IEEE Trans Med Imaging; 2001 Aug; 20(8):677-88. PubMed ID: 11513020
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Juxtacortical Lesions in Multiple Sclerosis: Assessment of Gray Matter Involvement Using Phase Difference-enhanced Imaging (PADRE).
    Futatsuya K; Kakeda S; Yoneda T; Ueda I; Watanabe K; Moriya J; Murakami Y; Ide S; Ogasawara A; Ohnari N; Okada K; Adachi H; Korogi Y
    Magn Reson Med Sci; 2016 Oct; 15(4):349-354. PubMed ID: 26841855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic segmentation of eight tissue classes in neonatal brain MRI.
    Anbeek P; Išgum I; van Kooij BJ; Mol CP; Kersbergen KJ; Groenendaal F; Viergever MA; de Vries LS; Benders MJ
    PLoS One; 2013; 8(12):e81895. PubMed ID: 24358132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.