BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26106595)

  • 1. Fast Growing Plantations for Wood Production - Integration of Ecological Effects and Economic Perspectives.
    Bredemeier M; Busch G; Hartmann L; Jansen M; Richter F; Lamersdorf NP
    Front Bioeng Biotechnol; 2015; 3():72. PubMed ID: 26106595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling short-rotation coppice and tree planting for urban carbon management - a citywide analysis.
    McHugh N; Edmondson JL; Gaston KJ; Leake JR; O'Sullivan OS
    J Appl Ecol; 2015 Oct; 52(5):1237-1245. PubMed ID: 27546901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Regional-Scale Impacts of Short Rotation Coppices on Ecosystem Services by Modeling Land-Use Decisions.
    Schulze J; Frank K; Priess JA; Meyer MA
    PLoS One; 2016; 11(4):e0153862. PubMed ID: 27082742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?
    Kalt G; Mayer A; Theurl MC; Lauk C; Erb KH; Haberl H
    Glob Change Biol Bioenergy; 2019 Nov; 11(11):1283-1297. PubMed ID: 31762785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial changes in soil properties and carbon sequestration potential under monocultures and short-rotation alley coppices with poplar and willow after three years of plantation.
    Tariq A; Gunina A; Lamersdorf N
    Sci Total Environ; 2018 Sep; 634():963-973. PubMed ID: 29660890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short rotation coppice for revaluation of contaminated land.
    Vandenhove H; Thiry Y; Gommers A; Goor F; Jossart JM; Holm E; Gäfvert T; Roed J; Grebenkov A; Timofeyev S
    J Environ Radioact; 2001; 56(1-2):157-84. PubMed ID: 11446117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England.
    Glithero NJ; Wilson P; Ramsden SJ
    Appl Energy; 2013 Jul; 107(100):209-218. PubMed ID: 23825896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioenergy crop production and carbon sequestration potential under changing climate and land use: A case study in the upper River Taw catchment in southwest England.
    Dixit PN; Richter GM; Coleman K; Collins AL
    Sci Total Environ; 2023 Nov; 900():166390. PubMed ID: 37597557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification and mapping of the supply of and demand for carbon storage and sequestration service in woody biomass and soil to mitigate climate change in the socio-ecological environment.
    Sahle M; Saito O; Fürst C; Yeshitela K
    Sci Total Environ; 2018 May; 624():342-354. PubMed ID: 29258035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioenergy to save the world. Producing novel energy plants for growth on abandoned land.
    Schröder P; Herzig R; Bojinov B; Ruttens A; Nehnevajova E; Stamatiadis S; Memon A; Vassilev A; Caviezel M; Vangronsveld J
    Environ Sci Pollut Res Int; 2008 May; 15(3):196-204. PubMed ID: 18504837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB.
    Milner S; Holland RA; Lovett A; Sunnenberg G; Hastings A; Smith P; Wang S; Taylor G
    Glob Change Biol Bioenergy; 2016 Mar; 8(2):317-333. PubMed ID: 27547244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France).
    Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation and mitigation of N2O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea.
    Kim Y; Seo Y; Kraus D; Klatt S; Haas E; Tenhunen J; Kiese R
    Sci Total Environ; 2015 Oct; 529():40-53. PubMed ID: 26005748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-energy retains its mitigation potential under elevated CO2.
    Liberloo M; Luyssaert S; Bellassen V; Njakou Djomo S; Lukac M; Calfapietra C; Janssens IA; Hoosbeek MR; Viovy N; Churkina G; Scarascia-Mugnozza G; Ceulemans R
    PLoS One; 2010 Jul; 5(7):e11648. PubMed ID: 20657833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.
    Dou C; Marcondes WF; Djaja JE; Bura R; Gustafson R
    Biotechnol Biofuels; 2017; 10():144. PubMed ID: 28592993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of climate and land use on N
    Gütlein A; Gerschlauer F; Kikoti I; Kiese R
    Glob Chang Biol; 2018 Mar; 24(3):1239-1255. PubMed ID: 29044840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.
    Kotowska MM; Leuschner C; Triadiati T; Hertel D
    Oecologia; 2016 Feb; 180(2):601-18. PubMed ID: 26546083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany - Model development and application.
    Quinkenstein A; Jochheim H
    J Environ Manage; 2016 Mar; 168():53-66. PubMed ID: 26696606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery.
    Parajuli R; Dalgaard T; Birkved M
    Sci Total Environ; 2018 Apr; 619-620():127-143. PubMed ID: 29145050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.
    Baah-Acheamfour M; Carlyle CN; Lim SS; Bork EW; Chang SX
    Sci Total Environ; 2016 Nov; 571():1115-27. PubMed ID: 27450260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.