These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26106809)

  • 1. Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch.
    Wu MC; Lowe PT; Robinson CJ; Vincent HA; Dixon N; Leigh J; Micklefield J
    J Am Chem Soc; 2015 Jul; 137(28):9015-21. PubMed ID: 26106809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic ligands for PreQ
    Connelly CM; Numata T; Boer RE; Moon MH; Sinniah RS; Barchi JJ; Ferré-D'Amaré AR; Schneekloth JS
    Nat Commun; 2019 Apr; 10(1):1501. PubMed ID: 30940810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Engineered PreQ1 Riboswitches for Inducible Gene Regulation in Mycobacteria.
    Van Vlack ER; Topp S; Seeliger JC
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
    Roth A; Winkler WC; Regulski EE; Lee BW; Lim J; Jona I; Barrick JE; Ritwik A; Kim JN; Welz R; Iwata-Reuyl D; Breaker RR
    Nat Struct Mol Biol; 2007 Apr; 14(4):308-17. PubMed ID: 17384645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species.
    Robinson CJ; Vincent HA; Wu MC; Lowe PT; Dunstan MS; Leys D; Micklefield J
    J Am Chem Soc; 2014 Jul; 136(30):10615-24. PubMed ID: 24971878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for pseudoknot formation of class I preQ1 riboswitch aptamers.
    Rieder U; Lang K; Kreutz C; Polacek N; Micura R
    Chembiochem; 2009 May; 10(7):1141-4. PubMed ID: 19382115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure.
    Suddala KC; Rinaldi AJ; Feng J; Mustoe AM; Eichhorn CD; Liberman JA; Wedekind JE; Al-Hashimi HM; Brooks CL; Walter NG
    Nucleic Acids Res; 2013 Dec; 41(22):10462-75. PubMed ID: 24003028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of orthogonally selective bacterial riboswitches by targeted mutagenesis and in vivo screening.
    Vincent HA; Robinson CJ; Wu MC; Dixon N; Micklefield J
    Methods Mol Biol; 2014; 1111():107-29. PubMed ID: 24549615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleobase mutants of a bacterial preQ
    Dutta D; Wedekind JE
    J Biol Chem; 2020 Feb; 295(9):2555-2567. PubMed ID: 31659117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding of a transcriptionally acting preQ1 riboswitch.
    Rieder U; Kreutz C; Micura R
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10804-9. PubMed ID: 20534493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemical probe based on the PreQ
    Balaratnam S; Rhodes C; Bume DD; Connelly C; Lai CC; Kelley JA; Yazdani K; Homan PJ; Incarnato D; Numata T; Schneekloth JS
    Nat Commun; 2021 Oct; 12(1):5856. PubMed ID: 34615874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ITC analysis of ligand binding to preQ₁ riboswitches.
    Liberman JA; Bogue JT; Jenkins JL; Salim M; Wedekind JE
    Methods Enzymol; 2014; 549():435-50. PubMed ID: 25432759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study of unfolding and regulation mechanism of preQ1 riboswitches.
    Gong Z; Zhao Y; Chen C; Xiao Y
    PLoS One; 2012; 7(9):e45239. PubMed ID: 23028870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis.
    Boumezbeur AH; Bruer M; Stoecklin G; Mack M
    Metab Eng; 2020 Sep; 61():58-68. PubMed ID: 32413407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rewiring Riboswitches to Create New Genetic Circuits in Bacteria.
    Robinson CJ; Medina-Stacey D; Wu MC; Vincent HA; Micklefield J
    Methods Enzymol; 2016; 575():319-48. PubMed ID: 27417935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.
    Ceres P; Garst AD; Marcano-Velázquez JG; Batey RT
    ACS Synth Biol; 2013 Aug; 2(8):463-72. PubMed ID: 23654267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.