These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26106810)

  • 1. Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets.
    Uetani K; Okada T; Oyama HT
    Biomacromolecules; 2015 Jul; 16(7):2220-7. PubMed ID: 26106810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films.
    Diaz JA; Ye Z; Wu X; Moore AL; Moon RJ; Martini A; Boday DJ; Youngblood JP
    Biomacromolecules; 2014 Nov; 15(11):4096-101. PubMed ID: 25286405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced High Thermal Conductivity Cellulose Filaments via Hydrodynamic Focusing.
    Wang G; Kudo M; Daicho K; Harish S; Xu B; Shao C; Lee Y; Liao Y; Matsushima N; Kodama T; Lundell F; Söderberg LD; Saito T; Shiomi J
    Nano Lett; 2022 Nov; 22(21):8406-8412. PubMed ID: 36283691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites.
    Hu D; Liu H; Ding Y; Ma W
    Carbohydr Polym; 2021 Jul; 264():118058. PubMed ID: 33910753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity analysis and applications of nanocellulose materials.
    Uetani K; Hatori K
    Sci Technol Adv Mater; 2017; 18(1):877-892. PubMed ID: 29152020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction and characterization of nanocellulose structures from raw cotton linter.
    Morais JP; Rosa Mde F; de Souza Filho Mde S; Nascimento LD; do Nascimento DM; Cassales AR
    Carbohydr Polym; 2013 Jan; 91(1):229-35. PubMed ID: 23044127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significant Reduction of Interfacial Thermal Resistance and Phonon Scattering in Graphene/Polyimide Thermally Conductive Composite Films for Thermal Management.
    Ruan K; Guo Y; Lu C; Shi X; Ma T; Zhang Y; Kong J; Gu J
    Research (Wash D C); 2021; 2021():8438614. PubMed ID: 33718876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Bio-Inspired Design of Highly Thermally Conductive and Superhydrophobic Nanocellulose Composite Films.
    Hu D; Ma W; Zhang Z; Ding Y; Wu L
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11115-11125. PubMed ID: 32049475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.
    Chen W; Li Q; Wang Y; Yi X; Zeng J; Yu H; Liu Y; Li J
    ChemSusChem; 2014 Jan; 7(1):154-61. PubMed ID: 24420495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials.
    Liang Q; Yao X; Wang W; Liu Y; Wong CP
    ACS Nano; 2011 Mar; 5(3):2392-401. PubMed ID: 21384860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Flexibility and Dimensions of Nanocelluloses on the Flow Properties of Their Aqueous Dispersions.
    Tanaka R; Saito T; Hondo H; Isogai A
    Biomacromolecules; 2015 Jul; 16(7):2127-31. PubMed ID: 26010082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and Robust Nanocellulose Width Estimation Using Turbidimetry.
    Shimizu M; Saito T; Nishiyama Y; Iwamoto S; Yano H; Isogai A; Endo T
    Macromol Rapid Commun; 2016 Oct; 37(19):1581-1586. PubMed ID: 27511960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Measurement of Temperature Diffusivity of Nanocellulose-Doped Biodegradable Composite Films.
    Fujisawa H; Ryu M; Lundgaard S; Linklater DP; Ivanova EP; Nishijima Y; Juodkazis S; Morikawa J
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of the heat conduction performance of boron nitride/cellulosic fibre insulating composites.
    Yu Z; Wang X; Bian H; Jiao L; Wu W; Dai H
    PLoS One; 2018; 13(7):e0200842. PubMed ID: 30024928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallinity-Independent yet Modification-Dependent True Density of Nanocellulose.
    Daicho K; Kobayashi K; Fujisawa S; Saito T
    Biomacromolecules; 2020 Feb; 21(2):939-945. PubMed ID: 31820948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of nanofibrillated cellulose to fabricate a homogeneous and flexible graphene-based electric heating membrane.
    Li X; Shao C; Zhuo B; Yang S; Zhu Z; Su C; Yuan Q
    Int J Biol Macromol; 2019 Oct; 139():1103-1116. PubMed ID: 31408657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses.
    Szymańska-Chargot M; Chylińska M; Pieczywek PM; Zdunek A
    Carbohydr Polym; 2019 Apr; 210():186-195. PubMed ID: 30732753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.
    Mortazavi B; Pötschke M; Cuniberti G
    Nanoscale; 2014 Mar; 6(6):3344-52. PubMed ID: 24518878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.
    Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF
    Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.