These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26106811)

  • 21. High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films.
    Chandrabose S; Chen K; Barker AJ; Sutton JJ; Prasad SKK; Zhu J; Zhou J; Gordon KC; Xie Z; Zhan X; Hodgkiss JM
    J Am Chem Soc; 2019 May; 141(17):6922-6929. PubMed ID: 30964678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of localized surface-plasmon mode on exciton transport and radiation emission in carbon nanotubes.
    Roslyak O; Cherqui C; Dunlap DH; Piryatinski A
    J Phys Chem B; 2014 Jul; 118(28):8070-80. PubMed ID: 24666158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer.
    Abasto DF; Mohseni M; Lloyd S; Zanardi P
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3750-70. PubMed ID: 22753824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films.
    Grechko M; Ye Y; Mehlenbacher RD; McDonough TJ; Wu MY; Jacobberger RM; Arnold MS; Zanni MT
    ACS Nano; 2014 Jun; 8(6):5383-94. PubMed ID: 24806792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exciton-exciton annihilation in organic lanthanide complexes.
    Mezyk J; Di Nuzzo D; Mech A; Tubino R; Meinardi F
    J Chem Phys; 2010 Jan; 132(2):024504. PubMed ID: 20095684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of Singlet Exciton Diffusion Length in Thin Evaporated C60 Films for Photovoltaics.
    Fravventura MC; Hwang J; Suijkerbuijk JW; Erk P; Siebbeles LD; Savenije TJ
    J Phys Chem Lett; 2012 Sep; 3(17):2367-73. PubMed ID: 26292116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers.
    de Sousa LE; de Oliveira Neto PH; Kjelstrup-Hansen J; da Silva Filho DA
    J Chem Phys; 2018 May; 148(20):204101. PubMed ID: 29865806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exciton diffusion and relaxation in methyl-substituted polyparaphenylene polymer films.
    Gulbinas V; Mineviciūte I; Hertel D; Wellander R; Yartsev A; Sundström V
    J Chem Phys; 2007 Oct; 127(14):144907. PubMed ID: 17935439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes.
    Dostál J; Mančal T; Augulis R; Vácha F; Pšenčík J; Zigmantas D
    J Am Chem Soc; 2012 Jul; 134(28):11611-7. PubMed ID: 22690836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective tight-binding models for excitons in branched conjugated molecules.
    Li H; Malinin SV; Tretiak S; Chernyak VY
    J Chem Phys; 2013 Aug; 139(6):064109. PubMed ID: 23947845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Singlet Exciton Diffusion in Organic Crystals Based on Marcus Transfer Rates.
    Stehr V; Fink RF; Engels B; Pflaum J; Deibel C
    J Chem Theory Comput; 2014 Mar; 10(3):1242-55. PubMed ID: 26580193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exciton formation, relaxation, and decay in PCDTBT.
    Banerji N; Cowan S; Leclerc M; Vauthey E; Heeger AJ
    J Am Chem Soc; 2010 Dec; 132(49):17459-70. PubMed ID: 21087001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells.
    Leblebici SY; Chen TL; Olalde-Velasco P; Yang W; Ma B
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10105-10. PubMed ID: 24041440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cavity-enhanced transport of excitons.
    Schachenmayer J; Genes C; Tignone E; Pupillo G
    Phys Rev Lett; 2015 May; 114(19):196403. PubMed ID: 26024186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.
    Wu G; Li Z; Zhang X; Lu G
    J Phys Chem Lett; 2014 Aug; 5(15):2649-56. PubMed ID: 26277958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsic optical bistability of thin films of linear molecular aggregates: the two-exciton approximation.
    Klugkist JA; Malyshev VA; Knoester J
    J Chem Phys; 2008 Feb; 128(8):084706. PubMed ID: 18315071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria.
    Fujita T; Brookes JC; Saikin SK; Aspuru-Guzik A
    J Phys Chem Lett; 2012 Sep; 3(17):2357-61. PubMed ID: 26292114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.