These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2610698)

  • 1. Inhibition of Clostridium difficile toxin A and B by 1,2-cyclohexanedione modification of an arginine residue.
    Balfanz J; Rautenberg P
    Biochem Biophys Res Commun; 1989 Dec; 165(3):1364-70. PubMed ID: 2610698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of staphylococcal alpha-toxin by covalent modification of an arginine residue.
    Hebert TE; Fackrell HB
    Biochim Biophys Acta; 1987 Dec; 916(3):419-27. PubMed ID: 3689801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serogroup F strains of Clostridium difficile produce toxin B but not toxin A.
    Depitre C; Delmee M; Avesani V; L'Haridon R; Roels A; Popoff M; Corthier G
    J Med Microbiol; 1993 Jun; 38(6):434-41. PubMed ID: 8510136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity assessment of Clostridium difficile toxins in rodent models and protection of vaccination.
    Wang S; Rustandi RR; Lancaster C; Hong LG; Thiriot DS; Xie J; Secore S; Kristopeit A; Wang SC; Heinrichs JH
    Vaccine; 2016 Mar; 34(10):1319-23. PubMed ID: 26614590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterisation of intracellular toxin A of Clostridium difficile.
    Meng XQ; Kamiya S; Yamakawa K; Ogura H; Nakamura S
    J Med Microbiol; 1993 Jan; 38(1):69-73. PubMed ID: 8418298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,2-Cyclohexanedione modification of arginine residues in egg-white riboflavin-binding protein.
    Kozik A; Guevara I; Zak Z
    Int J Biochem; 1988; 20(7):707-11. PubMed ID: 3181600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Clostridium difficile Toxin A by immunoblotting.
    Rautenberg P; Stender F; Ullmann U
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Feb; 261(1):29-42. PubMed ID: 3518293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for an essential arginine residue in the active site of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. Modification with 1,2-cyclohexanedione.
    Vlahos CJ; Ghalambor MA; Dekker EE
    J Biol Chem; 1985 May; 260(9):5480-5. PubMed ID: 3886656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers.
    Stubbe H; Berdoz J; Kraehenbuhl JP; Corthésy B
    J Immunol; 2000 Feb; 164(4):1952-60. PubMed ID: 10657645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of drugs on the response of a cell culture preparation to bacterial toxins.
    Giugliano LG; Drasar BS
    J Med Microbiol; 1984 Apr; 17(2):151-8. PubMed ID: 6142959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium difficile toxins and enterococcal translocation in vivo and in vitro.
    Feltis BA; Garni RM; Wells CL
    J Surg Res; 2001 May; 97(1):97-102. PubMed ID: 11319888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxins A and B of Clostridium difficile.
    Wolfhagen MJ; Torensma R; Fluit AC; Verhoef J
    FEMS Microbiol Rev; 1994 Jan; 13(1):59-64. PubMed ID: 8117467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of D-amino acid oxidase with 1,2-cyclohexanedione: evidence for one arginine in the substrate-binding site.
    Ferti C; Curti B; Simonetta MP; Ronchi S; Galliano M; Minchiotti L
    Eur J Biochem; 1981 Oct; 119(3):553-7. PubMed ID: 6118269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and initial optimization of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB).
    Letourneau JJ; Stroke IL; Hilbert DW; Sturzenbecker LJ; Marinelli BA; Quintero JG; Sabalski J; Ma L; Diller DJ; Stein PD; Webb ML
    Bioorg Med Chem Lett; 2018 Feb; 28(4):756-761. PubMed ID: 29331267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters.
    Babcock GJ; Broering TJ; Hernandez HJ; Mandell RB; Donahue K; Boatright N; Stack AM; Lowy I; Graziano R; Molrine D; Ambrosino DM; Thomas WD
    Infect Immun; 2006 Nov; 74(11):6339-47. PubMed ID: 16966409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium difficile Toxin Biology.
    Aktories K; Schwan C; Jank T
    Annu Rev Microbiol; 2017 Sep; 71():281-307. PubMed ID: 28657883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A non-haemagglutinating form of Clostridium difficile toxin A.
    Kamiya S; Borriello SP
    J Med Microbiol; 1992 Mar; 36(3):190-7. PubMed ID: 1548692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium difficile toxin A and its effects on cells.
    Fiorentini C; Thelestam M
    Toxicon; 1991; 29(6):543-67. PubMed ID: 1926159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterisation of Clostridium difficile toxin A by bovine thyroglobulin affinity chromatography and dissociation in denaturing conditions with or without reduction.
    Kamiya S; Reed PJ; Borriello SP
    J Med Microbiol; 1989 Sep; 30(1):69-77. PubMed ID: 2778794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of surface histidine residues abolishes the cytotoxic activity of Clostridium difficile toxin A.
    Roberts AK; Shone CC
    Toxicon; 2001; 39(2-3):325-33. PubMed ID: 10978751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.