BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 26107049)

  • 1. Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.
    Patriat R; Molloy EK; Birn RM
    Brain Connect; 2015 Nov; 5(9):582-95. PubMed ID: 26107049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved model of motion-related signal changes in fMRI.
    Patriat R; Reynolds RC; Birn RM
    Neuroimage; 2017 Jan; 144(Pt A):74-82. PubMed ID: 27570108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data.
    Lanka P; Deshpande G
    Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.
    Hallquist MN; Hwang K; Luna B
    Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
    Parkes L; Fulcher B; Yücel M; Fornito A
    Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is fMRI "noise" really noise? Resting state nuisance regressors remove variance with network structure.
    Bright MG; Murphy K
    Neuroimage; 2015 Jul; 114():158-69. PubMed ID: 25862264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project.
    Burgess GC; Kandala S; Nolan D; Laumann TO; Power JD; Adeyemo B; Harms MP; Petersen SE; Barch DM
    Brain Connect; 2016 Nov; 6(9):669-680. PubMed ID: 27571276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Motion Regression of Resting-State Data Using a Convolutional Neural Network Model.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Cordes D;
    Front Neurosci; 2019; 13():169. PubMed ID: 31057348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
    Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of nuisance removal for functional MRI of rodent brain.
    Chuang KH; Lee HL; Li Z; Chang WT; Nasrallah FA; Yeow LY; Singh KKDR
    Neuroimage; 2019 Mar; 188():694-709. PubMed ID: 30593905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion.
    Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T
    Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuisance effects and the limitations of nuisance regression in dynamic functional connectivity fMRI.
    Nalci A; Rao BD; Liu TT
    Neuroimage; 2019 Jan; 184():1005-1031. PubMed ID: 30223062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity.
    Kassinopoulos M; Mitsis GD
    Magn Reson Imaging; 2022 Jan; 85():228-250. PubMed ID: 34715292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pitfalls and Recommended Strategies and Metrics for Suppressing Motion Artifacts in Functional MRI.
    Raval V; Nguyen KP; Pinho M; Dewey RB; Trivedi M; Montillo AA
    Neuroinformatics; 2022 Oct; 20(4):879-896. PubMed ID: 35291020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight and inference for DVARS.
    Afyouni S; Nichols TE
    Neuroimage; 2018 May; 172():291-312. PubMed ID: 29307608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time and Recursive Estimators for Functional MRI Quality Assessment.
    Davydov N; Peek L; Auer T; Prilepin E; Gninenko N; Van De Ville D; Nikonorov A; Koush Y
    Neuroinformatics; 2022 Oct; 20(4):897-917. PubMed ID: 35297018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state FMRI.
    Spisák T; Jakab A; Kis SA; Opposits G; Aranyi C; Berényi E; Emri M
    PLoS One; 2014; 9(9):e104947. PubMed ID: 25188284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test-Retest Reproducibility of the Intrinsic Default Mode Network: Influence of Functional Magnetic Resonance Imaging Slice-Order Acquisition and Head-Motion Correction Methods.
    Marchitelli R; Collignon O; Jovicich J
    Brain Connect; 2017 Mar; 7(2):69-83. PubMed ID: 28084793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved 7 Tesla resting-state fMRI connectivity measurements by cluster-based modeling of respiratory volume and heart rate effects.
    Pinto J; Nunes S; Bianciardi M; Dias A; Silveira LM; Wald LL; Figueiredo P
    Neuroimage; 2017 Jun; 153():262-272. PubMed ID: 28392488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.