These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 26107498)
1. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. Heard S; Brown NA; Hammond-Kosack K PLoS One; 2015; 10(6):e0130534. PubMed ID: 26107498 [TBL] [Abstract][Full Text] [Related]
2. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. Amselem J; Cuomo CA; van Kan JA; Viaud M; Benito EP; Couloux A; Coutinho PM; de Vries RP; Dyer PS; Fillinger S; Fournier E; Gout L; Hahn M; Kohn L; Lapalu N; Plummer KM; Pradier JM; Quévillon E; Sharon A; Simon A; ten Have A; Tudzynski B; Tudzynski P; Wincker P; Andrew M; Anthouard V; Beever RE; Beffa R; Benoit I; Bouzid O; Brault B; Chen Z; Choquer M; Collémare J; Cotton P; Danchin EG; Da Silva C; Gautier A; Giraud C; Giraud T; Gonzalez C; Grossetete S; Güldener U; Henrissat B; Howlett BJ; Kodira C; Kretschmer M; Lappartient A; Leroch M; Levis C; Mauceli E; Neuvéglise C; Oeser B; Pearson M; Poulain J; Poussereau N; Quesneville H; Rascle C; Schumacher J; Ségurens B; Sexton A; Silva E; Sirven C; Soanes DM; Talbot NJ; Templeton M; Yandava C; Yarden O; Zeng Q; Rollins JA; Lebrun MH; Dickman M PLoS Genet; 2011 Aug; 7(8):e1002230. PubMed ID: 21876677 [TBL] [Abstract][Full Text] [Related]
3. A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea. Reich JD; Alexander TW; Chatterton S Lett Appl Microbiol; 2016 May; 62(5):379-85. PubMed ID: 26997098 [TBL] [Abstract][Full Text] [Related]
4. Conservation and expansion of a necrosis-inducing small secreted protein family from host-variable phytopathogens of the Sclerotiniaceae. Denton-Giles M; McCarthy H; Sehrish T; Dijkwel Y; Mesarich CH; Bradshaw RE; Cox MP; Dijkwel PP Mol Plant Pathol; 2020 Apr; 21(4):512-526. PubMed ID: 32061186 [TBL] [Abstract][Full Text] [Related]
5. Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics. Mousavi-Derazmahalleh M; Chang S; Thomas G; Derbyshire M; Bayer PE; Edwards D; Nelson MN; Erskine W; Lopez-Ruiz FJ; Clements J; Hane JK BMC Genomics; 2019 May; 20(1):385. PubMed ID: 31101009 [TBL] [Abstract][Full Text] [Related]
6. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. Guyon K; Balagué C; Roby D; Raffaele S BMC Genomics; 2014 May; 15(1):336. PubMed ID: 24886033 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. González-Fernández R; Aloria K; Valero-Galván J; Redondo I; Arizmendi JM; Jorrín-Novo JV J Proteomics; 2014 Jan; 97():195-221. PubMed ID: 23811051 [TBL] [Abstract][Full Text] [Related]
8. Variable Tandem Glycine-Rich Repeats Contribute to Cell Death-Inducing Activity of a Glycosylphosphatidylinositol-Anchored Cell Wall Protein That Is Associated with the Pathogenicity of Sclerotinia sclerotiorum. Hu Y; Gong H; Lu Z; Zhang P; Zheng S; Wang J; Tian B; Fang A; Yang Y; Bi C; Cheng J; Yu Y Microbiol Spectr; 2023 Jun; 11(3):e0098623. PubMed ID: 37140432 [TBL] [Abstract][Full Text] [Related]
9. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. Zhu W; Wei W; Fu Y; Cheng J; Xie J; Li G; Yi X; Kang Z; Dickman MB; Jiang D PLoS One; 2013; 8(1):e53901. PubMed ID: 23342034 [TBL] [Abstract][Full Text] [Related]
10. A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. Graham-Taylor C; Kamphuis LG; Derbyshire MC BMC Genomics; 2020 Jan; 21(1):7. PubMed ID: 31898475 [TBL] [Abstract][Full Text] [Related]
11. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea. Xu Y; Tan J; Lu J; Zhang Y; Li X Plant Biotechnol J; 2024 Jan; 22(1):262-277. PubMed ID: 37845842 [TBL] [Abstract][Full Text] [Related]
12. Comparative genomics of plant pathogenic Botrytis species with distinct host specificity. Valero-Jiménez CA; Veloso J; Staats M; van Kan JAL BMC Genomics; 2019 Mar; 20(1):203. PubMed ID: 30866801 [TBL] [Abstract][Full Text] [Related]
13. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. Yang G; Tang L; Gong Y; Xie J; Fu Y; Jiang D; Li G; Collinge DB; Chen W; Cheng J New Phytol; 2018 Jan; 217(2):739-755. PubMed ID: 29076546 [TBL] [Abstract][Full Text] [Related]
14. [Analysis of simple sequence repeats in genomes of Sclerotinia sclerotiorum and Botrytis cinerea]. Li W; Chen HG; Li W; Zhang AX; Chen LH; Jiang WL Yi Chuan; 2007 Sep; 29(9):1154-60. PubMed ID: 17855269 [TBL] [Abstract][Full Text] [Related]
15. pH modulation differs during sunflower cotyledon colonization by the two closely related necrotrophic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Billon-Grand G; Rascle C; Droux M; Rollins JA; Poussereau N Mol Plant Pathol; 2012 Aug; 13(6):568-78. PubMed ID: 22171786 [TBL] [Abstract][Full Text] [Related]
16. The host generalist phytopathogenic fungus Sclerotinia sclerotiorum differentially expresses multiple metabolic enzymes on two different plant hosts. Allan J; Regmi R; Denton-Giles M; Kamphuis LG; Derbyshire MC Sci Rep; 2019 Dec; 9(1):19966. PubMed ID: 31882688 [TBL] [Abstract][Full Text] [Related]
17. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. Li B; Wang W; Zong Y; Qin G; Tian S J Proteome Res; 2012 Aug; 11(8):4249-60. PubMed ID: 22746291 [TBL] [Abstract][Full Text] [Related]
18. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Lyu X; Shen C; Fu Y; Xie J; Jiang D; Li G; Cheng J Sci Rep; 2015 Nov; 5():15565. PubMed ID: 26531059 [TBL] [Abstract][Full Text] [Related]
19. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Ren W; Qian C; Ren D; Cai Y; Deng Z; Zhang N; Wang C; Wang Y; Zhu P; Xu L mBio; 2024 Jul; 15(7):e0013324. PubMed ID: 38814088 [No Abstract] [Full Text] [Related]
20. Genome-wide alternative splicing profiling in the fungal plant pathogen Sclerotinia sclerotiorum during the colonization of diverse host families. Ibrahim HMM; Kusch S; Didelon M; Raffaele S Mol Plant Pathol; 2021 Jan; 22(1):31-47. PubMed ID: 33111422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]