BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 26107534)

  • 1. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture.
    Zhang J; Mujeeb A; Du Y; Lin J; Ge Z
    Biomed Mater; 2015 Jun; 10(3):035016. PubMed ID: 26107534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering.
    Hwang Y; Sangaj N; Varghese S
    Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels.
    Villanueva I; Weigel CA; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2832-46. PubMed ID: 19508905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration.
    Zhang J; Wang J; Zhang H; Lin J; Ge Z; Zou X
    Biomed Mater; 2016 Jun; 11(3):035014. PubMed ID: 27305040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-O, carboxymethyl chitosan enhanced scaffold porosity and biocompatibility under e-beam irradiation at 50 kGy.
    Lee SY; Kamarul T
    Int J Biol Macromol; 2014 Mar; 64():115-22. PubMed ID: 24325858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan.
    Ingavle GC; Gehrke SH; Detamore MS
    Biomaterials; 2014 Apr; 35(11):3558-70. PubMed ID: 24462353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels.
    Farnsworth N; Bensard C; Bryant SJ
    Osteoarthritis Cartilage; 2012 Nov; 20(11):1326-35. PubMed ID: 22796510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing 3D photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering.
    Bryant SJ; Nicodemus GD; Villanueva I
    Pharm Res; 2008 Oct; 25(10):2379-86. PubMed ID: 18509600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3.
    Schneider MC; Chu S; Randolph MA; Bryant SJ
    Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels.
    Nicodemus GD; Bryant SJ
    Osteoarthritis Cartilage; 2010 Jan; 18(1):126-37. PubMed ID: 19748607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experimental study on collagen hydrogel scaffolds for cartilage tissue engineering].
    Li K; Guo L; Fan Y; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1356-61. PubMed ID: 23230673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.
    Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D
    Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic-organic hybrid scaffolds for osteochondral regeneration.
    Munoz-Pinto DJ; McMahon RE; Kanzelberger MA; Jimenez-Vergara AC; Grunlan MA; Hahn MS
    J Biomed Mater Res A; 2010 Jul; 94(1):112-21. PubMed ID: 20128006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production.
    Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK
    Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro.
    Liu J; Song H; Zhang L; Xu H; Zhao X
    Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering.
    Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A
    J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.