These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
407 related articles for article (PubMed ID: 26107534)
1. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Zhang J; Mujeeb A; Du Y; Lin J; Ge Z Biomed Mater; 2015 Jun; 10(3):035016. PubMed ID: 26107534 [TBL] [Abstract][Full Text] [Related]
2. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Hwang Y; Sangaj N; Varghese S Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791 [TBL] [Abstract][Full Text] [Related]
3. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Villanueva I; Weigel CA; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2832-46. PubMed ID: 19508905 [TBL] [Abstract][Full Text] [Related]
4. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration. Zhang J; Wang J; Zhang H; Lin J; Ge Z; Zou X Biomed Mater; 2016 Jun; 11(3):035014. PubMed ID: 27305040 [TBL] [Abstract][Full Text] [Related]
6. N-O, carboxymethyl chitosan enhanced scaffold porosity and biocompatibility under e-beam irradiation at 50 kGy. Lee SY; Kamarul T Int J Biol Macromol; 2014 Mar; 64():115-22. PubMed ID: 24325858 [TBL] [Abstract][Full Text] [Related]
7. The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Ingavle GC; Gehrke SH; Detamore MS Biomaterials; 2014 Apr; 35(11):3558-70. PubMed ID: 24462353 [TBL] [Abstract][Full Text] [Related]
8. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue. Risbud M; Ringe J; Bhonde R; Sittinger M Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119 [TBL] [Abstract][Full Text] [Related]
9. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
10. The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels. Farnsworth N; Bensard C; Bryant SJ Osteoarthritis Cartilage; 2012 Nov; 20(11):1326-35. PubMed ID: 22796510 [TBL] [Abstract][Full Text] [Related]
11. Designing 3D photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering. Bryant SJ; Nicodemus GD; Villanueva I Pharm Res; 2008 Oct; 25(10):2379-86. PubMed ID: 18509600 [TBL] [Abstract][Full Text] [Related]
12. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3. Schneider MC; Chu S; Randolph MA; Bryant SJ Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256 [TBL] [Abstract][Full Text] [Related]
13. Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels. Nicodemus GD; Bryant SJ Osteoarthritis Cartilage; 2010 Jan; 18(1):126-37. PubMed ID: 19748607 [TBL] [Abstract][Full Text] [Related]
14. [Experimental study on collagen hydrogel scaffolds for cartilage tissue engineering]. Li K; Guo L; Fan Y; Zhang X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1356-61. PubMed ID: 23230673 [TBL] [Abstract][Full Text] [Related]
15. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907 [TBL] [Abstract][Full Text] [Related]
16. Inorganic-organic hybrid scaffolds for osteochondral regeneration. Munoz-Pinto DJ; McMahon RE; Kanzelberger MA; Jimenez-Vergara AC; Grunlan MA; Hahn MS J Biomed Mater Res A; 2010 Jul; 94(1):112-21. PubMed ID: 20128006 [TBL] [Abstract][Full Text] [Related]
17. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering. Neumann AJ; Quinn T; Bryant SJ Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026 [TBL] [Abstract][Full Text] [Related]
18. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production. Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029 [TBL] [Abstract][Full Text] [Related]
19. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Liu J; Song H; Zhang L; Xu H; Zhao X Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]