These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 26107610)

  • 41. Oncogenic Mutants of
    Maust JD; Whitehead CE; Sebolt-Leopold JS
    Cancer Discov; 2018 May; 8(5):534-536. PubMed ID: 29716939
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fragment-Based Discovery of Novel Allosteric MEK1 Binders.
    Di Fruscia P; Edfeldt F; Shamovsky I; Collie GW; Aagaard A; Barlind L; Börjesson U; Hansson EL; Lewis RJ; Nilsson MK; Öster L; Pemberton J; Ripa L; Storer RI; Käck H
    ACS Med Chem Lett; 2021 Feb; 12(2):302-308. PubMed ID: 33603979
    [TBL] [Abstract][Full Text] [Related]  

  • 43. De novo generation of multi-target compounds using deep generative chemistry.
    Munson BP; Chen M; Bogosian A; Kreisberg JF; Licon K; Abagyan R; Kuenzi BM; Ideker T
    Nat Commun; 2024 May; 15(1):3636. PubMed ID: 38710699
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical control of cell signaling by single-chain photoswitchable kinases.
    Zhou XX; Fan LZ; Li P; Shen K; Lin MZ
    Science; 2017 Feb; 355(6327):836-842. PubMed ID: 28232577
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A high content, high throughput cellular thermal stability assay for measuring drug-target engagement in living cells.
    Massey AJ
    PLoS One; 2018; 13(4):e0195050. PubMed ID: 29617433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In Situ Target Engagement Studies in Adherent Cells.
    Axelsson H; Almqvist H; Otrocka M; Vallin M; Lundqvist S; Hansson P; Karlsson U; Lundbäck T; Seashore-Ludlow B
    ACS Chem Biol; 2018 Apr; 13(4):942-950. PubMed ID: 29433316
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Data set of competitive and allosteric protein kinase inhibitors confirmed by X-ray crystallography.
    Hu H; Laufkötter O; Miljković F; Bajorath J
    Data Brief; 2021 Apr; 35():106816. PubMed ID: 33604432
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of Specific
    Kung PP; Bingham P; Burke BJ; Chen Q; Cheng X; Deng YL; Dou D; Feng J; Gallego GM; Gehring MR; Grant SK; Greasley S; Harris AR; Maegley KA; Meier J; Meng X; Montano JL; Morgan BA; Naughton BS; Palde PB; Paul TA; Richardson P; Sakata S; Shaginian A; Sonnenburg WK; Subramanyam C; Timofeevski S; Wan J; Yan W; Stewart AE
    ACS Med Chem Lett; 2020 Jun; 11(6):1175-1184. PubMed ID: 32550998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correction: The MEK1/2 Inhibitor Pimasertib Enhances Gemcitabine Efficacy-Response.
    Clin Cancer Res; 2016 Nov; 22(22):5619. PubMed ID: 28151716
    [No Abstract]   [Full Text] [Related]  

  • 50. Discovering cell-active BCL6 inhibitors: effectively combining biochemical HTS with multiple biophysical techniques, X-ray crystallography and cell-based assays.
    Pierrat OA; Liu M; Collie GW; Shetty K; Rodrigues MJ; Le Bihan YV; Gunnell EA; McAndrew PC; Stubbs M; Rowlands MG; Yahya N; Shehu E; Talbot R; Pickard L; Bellenie BR; Cheung KJ; Drouin L; Innocenti P; Woodward H; Davis OA; Lloyd MG; Varela A; Huckvale R; Broccatelli F; Carter M; Galiwango D; Hayes A; Raynaud FI; Bryant C; Whittaker S; Rossanese OW; Hoelder S; Burke R; van Montfort RLM
    Sci Rep; 2022 Nov; 12(1):18633. PubMed ID: 36329085
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-Throughput Cellular Thermal Shift Assays in Research and Drug Discovery.
    Henderson MJ; Holbert MA; Simeonov A; Kallal LA
    SLAS Discov; 2020 Feb; 25(2):137-147. PubMed ID: 31566060
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase.
    Martinez NJ; Asawa RR; Cyr MG; Zakharov A; Urban DJ; Roth JS; Wallgren E; Klumpp-Thomas C; Coussens NP; Rai G; Yang SM; Hall MD; Marugan JJ; Simeonov A; Henderson MJ
    Sci Rep; 2018 Jun; 8(1):9472. PubMed ID: 29930256
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design, synthesis and biological evaluation of cobalt(II)-Schiff base complexes as ATP-noncompetitive MEK1 inhibitors.
    Li H; Xi D; Niu Y; Wang C; Xu F; Liang L; Xu P
    J Inorg Biochem; 2019 Jun; 195():174-181. PubMed ID: 30954694
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MEK1/2 Inhibitors: Molecular Activity and Resistance Mechanisms.
    Wu PK; Park JI
    Semin Oncol; 2015 Dec; 42(6):849-62. PubMed ID: 26615130
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of allosteric kinase inhibitors by displacement of active site probes.
    Lebakken CS; Reichling LJ; Ellefson JM; Riddle SM
    J Biomol Screen; 2012 Jul; 17(6):813-21. PubMed ID: 22453235
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MEK1/2 inhibitors in the treatment of gynecologic malignancies.
    Miller CR; Oliver KE; Farley JH
    Gynecol Oncol; 2014 Apr; 133(1):128-37. PubMed ID: 24434059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Examining Ligand-Based Stabilization of Proteins in Cells with MEK1 Kinase Inhibitors.
    Auld DS; Davis CA; Jimenez M; Knight S; Orme JP
    Assay Drug Dev Technol; 2015 Jun; 13(5):266-76. PubMed ID: 26107610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antitumor effects of novel highly hydrophilic and non-ATP-competitive MEK1/2 inhibitor, SMK-17.
    Kiga M; Tanzawa F; Iwasaki S; Inaba F; Fujiwara K; Iwadare H; Echigo T; Nakamura Y; Shibata T; Suzuki K; Yasumatsu I; Nakayama A; Sasazawa Y; Tashiro E; Imoto M; Kurakata S
    Anticancer Drugs; 2012 Jan; 23(1):119-30. PubMed ID: 22008853
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.