BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 26107646)

  • 1. Task uncertainty can account for mixing and switch costs in task-switching.
    Cooper PS; Garrett PM; Rennie JL; Karayanidis F
    PLoS One; 2015; 10(6):e0131556. PubMed ID: 26107646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task practice differentially modulates task-switching performance across the adult lifespan.
    Whitson LR; Karayanidis F; Michie PT
    Acta Psychol (Amst); 2012 Jan; 139(1):124-36. PubMed ID: 22000521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs.
    Tarantino V; Mazzonetto I; Vallesi A
    Brain Res; 2016 Sep; 1646():160-173. PubMed ID: 27238463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological correlates of residual switch costs.
    Gajewski PD; Kleinsorge T; Falkenstein M
    Cortex; 2010 Oct; 46(9):1138-48. PubMed ID: 19717147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct neurophysiological mechanisms mediate mixing costs and switch costs.
    Wylie GR; Murray MM; Javitt DC; Foxe JJ
    J Cogn Neurosci; 2009 Jan; 21(1):105-18. PubMed ID: 18476759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task switching costs in preschool children and adults.
    Peng A; Kirkham NZ; Mareschal D
    J Exp Child Psychol; 2018 Aug; 172():59-72. PubMed ID: 29587131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. You can't always get what you want: the influence of unexpected task constraint on voluntary task switching.
    Weaver SM; Foxe JJ; Shpaner M; Wylie GR
    Q J Exp Psychol (Hove); 2014; 67(11):2247-59. PubMed ID: 24916773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-set switching under cue-based versus memory-based switching conditions in younger and older adults.
    Kray J
    Brain Res; 2006 Aug; 1105(1):83-92. PubMed ID: 16387284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractionating the cognitive control required to bring about a change in task: a dense-sensor event-related potential study.
    Astle DE; Jackson GM; Swainson R
    J Cogn Neurosci; 2008 Feb; 20(2):255-67. PubMed ID: 18275333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential contribution of task conflicts to task switch cost and task mixing cost in alternating runs and cued task-switching: evidence from ex-Gaussian modeling of reaction time distributions.
    Shahar N; Meiran N
    Psychol Res; 2015 Mar; 79(2):259-66. PubMed ID: 24760460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-switch costs subsequent to cue-only trials.
    Swainson R; Martin D; Prosser L
    Q J Exp Psychol (Hove); 2017 Aug; 70(8):1453-1470. PubMed ID: 27174655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using advance information in dynamic cognitive control: an ERP study of task-switching.
    Swainson R; Jackson SR; Jackson GM
    Brain Res; 2006 Aug; 1105(1):61-72. PubMed ID: 16626653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cue-switch costs in task-switching: cue priming or control processes?
    Grange JA; Houghton G
    Psychol Res; 2010 Sep; 74(5):481-90. PubMed ID: 20037766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-stimulus EEG effects related to response speed, task switching and upcoming response hand.
    Gladwin TE; Lindsen JP; de Jong R
    Biol Psychol; 2006 Apr; 72(1):15-34. PubMed ID: 16169147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifting the set of stimulus selection when switching between tasks.
    Wendt M; Luna-Rodriguez A; Jacobsen T
    Psychol Res; 2018 Jan; 82(1):134-145. PubMed ID: 28752317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring individual differences in task switching.
    Li B; Li X; Stoet G; Lages M
    Acta Psychol (Amst); 2019 Feb; 193():80-95. PubMed ID: 30599293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-switching costs have distinct phase-locked and nonphase-locked EEG power effects.
    McKewen M; Cooper PS; Wong ASW; Michie PT; Sauseng P; Karayanidis F
    Psychophysiology; 2020 May; 57(5):e13533. PubMed ID: 31994736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisaccades and task-switching: interactions in controlled processing.
    Cherkasova MV; Manoach DS; Intriligator JM; Barton JJ
    Exp Brain Res; 2002 Jun; 144(4):528-37. PubMed ID: 12037637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of performing versus preparing a task on the subsequent switch cost.
    Swainson R; Prosser L; Karavasilev K; Romanczuk A
    Psychol Res; 2021 Feb; 85(1):364-383. PubMed ID: 31624918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switch-specific and general preparation map onto different ERP components in a task-switching paradigm.
    Karayanidis F; Provost A; Brown S; Paton B; Heathcote A
    Psychophysiology; 2011 Apr; 48(4):559-68. PubMed ID: 20718932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.