These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26108369)

  • 1. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule.
    Zheng P; Arantes GM; Field MJ; Li H
    Nat Commun; 2015 Jun; 6():7569. PubMed ID: 26108369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible unfolding-refolding of rubredoxin: a single-molecule force spectroscopy study.
    Zheng P; Wang Y; Li H
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14060-3. PubMed ID: 25314323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin.
    Zheng P; Chou CC; Guo Y; Wang Y; Li H
    J Am Chem Soc; 2013 Nov; 135(47):17783-92. PubMed ID: 24171546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single molecule force spectroscopy reveals that iron is released from the active site of rubredoxin by a stochastic mechanism.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2013 May; 135(21):7992-8000. PubMed ID: 23627554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single molecule force spectroscopy: a new tool for bioinorganic chemistry.
    Li H; Zheng P
    Curr Opin Chem Biol; 2018 Apr; 43():58-67. PubMed ID: 29223008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Measurements of the Cobalt-Thiolate Bonds Strength in Rubredoxin by Single-Molecule Force Spectroscopy.
    Shi S; Wu T; Zheng P
    Chembiochem; 2022 Jun; 23(12):e202200165. PubMed ID: 35475313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A synthetic redox biofilm made from metalloprotein-prion domain chimera nanowires.
    Altamura L; Horvath C; Rengaraj S; Rongier A; Elouarzaki K; Gondran C; Maçon AL; Vendrely C; Bouchiat V; Fontecave M; Mariolle D; Rannou P; Le Goff A; Duraffourg N; Holzinger M; Forge V
    Nat Chem; 2017 Feb; 9(2):157-163. PubMed ID: 28282052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy.
    Zheng P; Li H
    Biophys J; 2011 Sep; 101(6):1467-73. PubMed ID: 21943428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction.
    Koti Ainavarapu SR; Wiita AP; Dougan L; Uggerud E; Fernandez JM
    J Am Chem Soc; 2008 May; 130(20):6479-87. PubMed ID: 18433129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Unfolding and Folding of the Metalloprotein Ferredoxin Revealed by Single-Molecule Atomic Force Microscopy.
    Lei H; Guo Y; Hu X; Hu C; Hu X; Li H
    J Am Chem Soc; 2017 Feb; 139(4):1538-1544. PubMed ID: 28075577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium Studies of Designed Metalloproteins.
    Gibney BR
    Methods Enzymol; 2016; 580():417-38. PubMed ID: 27586343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial electrochemical electron transfer in biology - towards the level of the single molecule.
    Zhang J; Chi Q; Hansen AG; Jensen PS; Salvatore P; Ulstrup J
    FEBS Lett; 2012 Mar; 586(5):526-35. PubMed ID: 22024483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale modeling of unfolding and bond dissociation of rubredoxin metalloprotein.
    Sheikhzadeh A; Safaei M; Fadaei Naeini V; Baghani M; Foroutan M; Baniassadi M
    J Mol Graph Model; 2024 Jun; 129():108749. PubMed ID: 38442439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single molecule force spectroscopy reveals that a two-coordinate ferric site is critical for the folding of holo-rubredoxin.
    Li J; Li H
    Nanoscale; 2020 Nov; 12(44):22564-22573. PubMed ID: 33169779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metalloprotein Crystallography: More than a Structure.
    Bowman SE; Bridwell-Rabb J; Drennan CL
    Acc Chem Res; 2016 Apr; 49(4):695-702. PubMed ID: 26975689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Construction of Functional Supramolecular Metalloprotein Assemblies.
    Churchfield LA; Tezcan FA
    Acc Chem Res; 2019 Feb; 52(2):345-355. PubMed ID: 30698941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enthalpy/entropy compensation phenomena in the reduction thermodynamics of electron transport metalloproteins.
    Battistuzzi G; Borsari M; Di Rocco G; Ranieri A; Sola M
    J Biol Inorg Chem; 2004 Jan; 9(1):23-6. PubMed ID: 14586786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Molecule Force Spectroscopy Studies on Metalloproteins: Opportunities and Challenges.
    Li H
    Langmuir; 2023 Jan; 39(4):1345-1353. PubMed ID: 36647634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2012 Mar; 134(9):4124-31. PubMed ID: 22309227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.