These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26108369)

  • 21. An Unexpected Duo: Rubredoxin Binds Nine TPR Motifs to Form LapB, an Essential Regulator of Lipopolysaccharide Synthesis.
    Prince C; Jia Z
    Structure; 2015 Aug; 23(8):1500-1506. PubMed ID: 26190574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The de novo design of a rubredoxin-like Fe site.
    Farinas E; Regan L
    Protein Sci; 1998 Sep; 7(9):1939-46. PubMed ID: 9761474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural reorganization renders enhanced metalloprotein stability.
    Botelho HM; Gomes CM
    Chem Commun (Camb); 2011 Oct; 47(39):11149-51. PubMed ID: 21894348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model [Cd(CysS)4]2- center.
    Henehan CJ; Pountney DL; Zerbe O; Vasák M
    Protein Sci; 1993 Oct; 2(10):1756-64. PubMed ID: 8251947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution atomic force microscopy visualization of metalloproteins and their complexes.
    Barinov NA; Vlasova II; Sokolov AV; Kostevich VA; Dubrovin EV; Klinov DV
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2862-2868. PubMed ID: 30251674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incorporation of a molybdenum atom in a Rubredoxin-type Centre of a de novo-designed α
    Bragança PMS; Carepo MSP; Pauleta SR; Pinter TBJ; Elia M; Cordas CM; Moura I; Pecoraro VL; Moura JJG
    J Inorg Biochem; 2023 Mar; 240():112096. PubMed ID: 36603242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid dynamics simulation engine for metalloproteins.
    Sparta M; Shirvanyants D; Ding F; Dokholyan NV; Alexandrova AN
    Biophys J; 2012 Aug; 103(4):767-76. PubMed ID: 22947938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation.
    Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q
    J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns.
    Tamames B; Sousa SF; Tamames J; Fernandes PA; Ramos MJ
    Proteins; 2007 Nov; 69(3):466-75. PubMed ID: 17623850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Establishing isostructural metal substitution in metalloproteins using 1H NMR, circular dichroism, and Fourier transform infrared spectroscopy.
    Pountney DL; Henehan CJ; Vasák M
    Protein Sci; 1995 Aug; 4(8):1571-6. PubMed ID: 8520483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM; Li X; Wei W; Li Y; Duan Z; Zheng J; Huang T
    Chemistry; 2007; 13(11):3120-30. PubMed ID: 17201001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solid-State Metalloproteins-An Alternative to Immobilisation.
    Rapson TD
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27428936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.
    Ryde U
    Dalton Trans; 2007 Feb; (6):607-25. PubMed ID: 17268593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level.
    Deng Y; Wu T; Wang M; Shi S; Yuan G; Li X; Chong H; Wu B; Zheng P
    Nat Commun; 2019 Jun; 10(1):2775. PubMed ID: 31235796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T; Jayaram B
    Proteins; 2007 Jun; 67(4):1167-78. PubMed ID: 17380508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Miniaturized metalloproteins: application to iron-sulfur proteins.
    Lombardi A; Marasco D; Maglio O; Di Costanzo L; Nastri F; Pavone V
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11922-7. PubMed ID: 11050226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GPDOCK: highly accurate docking strategy for metalloproteins based on geometric probability.
    Wang K
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry.
    Kaltashov IA; Zhang M; Eyles SJ; Abzalimov RR
    Anal Bioanal Chem; 2006 Oct; 386(3):472-81. PubMed ID: 16932945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions.
    Hirota S; Lin YW
    J Biol Inorg Chem; 2018 Jan; 23(1):7-25. PubMed ID: 29218629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile method of constructing polyproteins for single-molecule force spectroscopy studies.
    Zheng P; Cao Y; Li H
    Langmuir; 2011 May; 27(10):5713-8. PubMed ID: 21486060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.