These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26108405)

  • 1. Observation of Single-Protein and DNA Macromolecule Collisions on Ultramicroelectrodes.
    Dick JE; Renault C; Bard AJ
    J Am Chem Soc; 2015 Jul; 137(26):8376-9. PubMed ID: 26108405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Prussian Blue modified ultramicroelectrode for GOD imaging using scanning electrochemical microscopy.
    Li J; Yu J
    Bioelectrochemistry; 2008 Feb; 72(1):102-6. PubMed ID: 18203668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA as a support for glucose oxidase immobilization at Prussian blue-modified glassy carbon electrode in biosensor preparation.
    Kafi AK; Lee DY; Park SH; Kwon YS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3539-42. PubMed ID: 17252806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme and Mediator-coadsorbed Carbon Felt Electrode for Electrochemical Detection of Glucose Covered with Polymer Layers Based on Layer-by-Layer Technique.
    Yabuki S; Hirata Y
    Anal Sci; 2015; 31(7):693-7. PubMed ID: 26165293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ deposition of Prussian blue on mesoporous carbon nanosphere for sensitive electrochemical immunoassay.
    Lai G; Zhang H; Yu A; Ju H
    Biosens Bioelectron; 2015 Dec; 74():660-5. PubMed ID: 26201983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchrotron infrared radiation for electrochemical external reflection spectroscopy: a case study using ferrocyanide.
    Rosendahl SM; Borondics F; May TE; Pedersen TM; Burgess IJ
    Anal Chem; 2011 May; 83(10):3632-9. PubMed ID: 21486090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses.
    Dick JE; Hilterbrand AT; Strawsine LM; Upton JW; Bard AJ
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6403-8. PubMed ID: 27217569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocatalytically induced formation of cupric ferrocyanide nanoparticles and their application for electrochemical and optical biosensing of glucose.
    Wang J; Sánchez Arribas A
    Small; 2006 Jan; 2(1):129-34. PubMed ID: 17193568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-capped relay-functionalized mesoporous carbon nanoparticles: effective bioelectrocatalytic matrices for sensing and biofuel cell applications.
    Trifonov A; Herkendell K; Tel-Vered R; Yehezkeli O; Woerner M; Willner I
    ACS Nano; 2013 Dec; 7(12):11358-68. PubMed ID: 24266869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films.
    Abbaspour A; Mehrgardi MA
    Anal Chem; 2004 Oct; 76(19):5690-6. PubMed ID: 15456287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronically type-sorted carbon nanotube-based electrochemical biosensors with glucose oxidase and dehydrogenase.
    Muguruma H; Hoshino T; Nowaki K
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):584-92. PubMed ID: 25522366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Average collision velocity of single yeast cells during electrochemically induced impacts.
    Lutkenhaus JA; Ahmed JU; Hasan M; Prosser DC; Alvarez JC
    Analyst; 2024 May; 149(11):3214-3223. PubMed ID: 38656271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-electrode approach for highly selective detection of glucose based on diffusion layer theory: experiments and simulation.
    Wang K; Zhang D; Zhou T; Xia XH
    Chemistry; 2005 Feb; 11(4):1341-7. PubMed ID: 15643665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring the electrophoretic migration and adsorption of single insulating nanoparticles at ultramicroelectrodes.
    Boika A; Thorgaard SN; Bard AJ
    J Phys Chem B; 2013 Apr; 117(16):4371-80. PubMed ID: 23092206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-doped carbon nanospheres derived from cocoon silk as metal-free electrocatalyst for glucose sensing.
    Li T; Li Y; Wang C; Gao ZD; Song YY
    Talanta; 2015 Nov; 144():1245-51. PubMed ID: 26452954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent attachment of biomacromolecules to plasma-patterned and functionalized carbon nanotube-based devices for electrochemical biosensing.
    Kim JH; Jin JH; Lee JY; Park EJ; Min NK
    Bioconjug Chem; 2012 Oct; 23(10):2078-86. PubMed ID: 22988883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemistry of horseradish peroxidase immobilized on electrografted 4-ethynylphenyl film via click chemistry.
    Ran Q; Peng R; Liang C; Ye S; Xian Y; Zhang W; Jin L
    Anal Chim Acta; 2011 Jul; 697(1-2):27-31. PubMed ID: 21641415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization.
    Kavanagh P; Leech D
    Anal Chem; 2006 Apr; 78(8):2710-6. PubMed ID: 16615783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic Amplification of Single Nanoparticle Collisions Using DNA-Modified Surfaces.
    Alligrant TM; Dasari R; Stevenson KJ; Crooks RM
    Langmuir; 2015 Oct; 31(42):11724-33. PubMed ID: 26457645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-directed assembly of artificial multienzyme complexes.
    Müller J; Niemeyer CM
    Biochem Biophys Res Commun; 2008 Dec; 377(1):62-7. PubMed ID: 18823945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.