These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26108468)

  • 101. Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine.
    Madhuri KP; Sagade AA; Santra PK; John NS
    Beilstein J Nanotechnol; 2020; 11():814-820. PubMed ID: 32551206
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Quantitative probe for in-plane piezoelectric coupling in 2D materials.
    Yarajena SS; Biswas R; Raghunathan V; Naik AK
    Sci Rep; 2021 Mar; 11(1):7066. PubMed ID: 33782418
    [TBL] [Abstract][Full Text] [Related]  

  • 103. A preparation approach of exploring cluster ion implantation: from ultra-thin carbon film to graphene.
    Wang Z; Zhang Z; Zhang R; Li H; Fu D
    Nanoscale Res Lett; 2014; 9(1):205. PubMed ID: 24910570
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Dark-field transmission electron microscopy and the Debye-Waller factor of graphene.
    Shevitski B; Mecklenburg M; Hubbard WA; White ER; Dawson B; Lodge MS; Ishigami M; Regan BC
    Phys Rev B Condens Matter Mater Phys; 2013 Jan; 87():045417. PubMed ID: 25242882
    [TBL] [Abstract][Full Text] [Related]  

  • 105. The adhesion of a mica nanolayer on a single-layer graphene supported by SiO
    Yu B; Hou L; Wang S; Huang H
    Nanotechnology; 2021 Jan; 32(4):045701. PubMed ID: 33027772
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Direct growth of a porous substrate on high-quality graphene via in situ phase inversion of a polymeric solution.
    Qin Y; Koehler S; Hu Y; Wu Y; Peng X; Ni M
    Nanoscale; 2020 Feb; 12(8):4953-4958. PubMed ID: 32053130
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Fabrication of dielectric nanocubes in ordered structure by capillary force assisted self-assembly method and their piezoresponse properties.
    Mimura K; Dang F; Kato K; Imai H; Wada S; Haneda H; Kuwabara M
    J Nanosci Nanotechnol; 2012 May; 12(5):3853-61. PubMed ID: 22852316
    [TBL] [Abstract][Full Text] [Related]  

  • 108. "Snowing" Graphene using Microwave Ovens.
    Sun Y; Yang L; Xia K; Liu H; Han D; Zhang Y; Zhang J
    Adv Mater; 2018 Aug; ():e1803189. PubMed ID: 30133020
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.
    Yan Z; Jiang L
    Nanomaterials (Basel); 2017 Jan; 7(2):. PubMed ID: 28336861
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Piezoelectricity in hafnia.
    Dutta S; Buragohain P; Glinsek S; Richter C; Aramberri H; Lu H; Schroeder U; Defay E; Gruverman A; Íñiguez J
    Nat Commun; 2021 Dec; 12(1):7301. PubMed ID: 34911930
    [TBL] [Abstract][Full Text] [Related]  

  • 111. How graphene slides: measurement and theory of strain-dependent frictional forces between graphene and SiO2.
    Kitt AL; Qi Z; Rémi S; Park HS; Swan AK; Goldberg BB
    Nano Lett; 2013 Jun; 13(6):2605-10. PubMed ID: 23627605
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Tailoring Mechanically Tunable Strain Fields in Graphene.
    Goldsche M; Sonntag J; Khodkov T; Verbiest GJ; Reichardt S; Neumann C; Ouaj T; von den Driesch N; Buca D; Stampfer C
    Nano Lett; 2018 Mar; 18(3):1707-1713. PubMed ID: 29425440
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Boosting Piezoelectricity under Illumination via the Bulk Photovoltaic Effect and the Schottky Barrier Effect in BiFeO
    Heo Y; Alexe M
    Adv Mater; 2022 Feb; 34(5):e2105845. PubMed ID: 34763374
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Raman and Conductivity Analysis of Graphene for Biomedical Applications.
    Qiu C; Bennet KE; Khan T; Ciubuc JD; Manciu FS
    Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774016
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Strain engineering of graphene on rigid substrates.
    Zhang Y; Jin Y; Liu J; Ren Q; Chen Z; Zhao Y; Zhao P
    Nanoscale Adv; 2022 Nov; 4(23):5056-5061. PubMed ID: 36504754
    [TBL] [Abstract][Full Text] [Related]  

  • 116. The positive piezoconductive effect in graphene.
    Xu K; Wang K; Zhao W; Bao W; Liu E; Ren Y; Wang M; Fu Y; Zeng J; Li Z; Zhou W; Song F; Wang X; Shi Y; Wan X; Fuhrer MS; Wang B; Qiao Z; Miao F; Xing D
    Nat Commun; 2015 Sep; 6():8119. PubMed ID: 26360786
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Graphene at Fifteen.
    Ye R; Tour JM
    ACS Nano; 2019 Oct; 13(10):10872-10878. PubMed ID: 31525904
    [TBL] [Abstract][Full Text] [Related]  

  • 118. High-Contrast SEM Imaging of Supported Few-Layer Graphene for Differentiating Distinct Layers and Resolving Fine Features: There is Plenty of Room at the Bottom.
    Huang L; Zhang D; Zhang FH; Feng ZH; Huang YD; Gan Y
    Small; 2018 May; 14(22):e1704190. PubMed ID: 29717816
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Phononics of Graphene Interfaced with Flowing Ionic Fluid: An Avenue for High Spatial Resolution Flow Sensor Applications.
    Ahmadian Yazdi A; Xu J; Berry V
    ACS Nano; 2021 Apr; 15(4):6998-7005. PubMed ID: 33834760
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Strain superlattices and macroscale suspension of graphene induced by corrugated substrates.
    Reserbat-Plantey A; Kalita D; Han Z; Ferlazzo L; Autier-Laurent S; Komatsu K; Li C; Weil R; Ralko A; Marty L; Guéron S; Bendiab N; Bouchiat H; Bouchiat V
    Nano Lett; 2014 Sep; 14(9):5044-51. PubMed ID: 25119792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.