These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26108525)
1. Rule-Based Prediction Models of Cytochrome P450 Inhibition. Su BH; Tu YS; Lin C; Shao CY; Lin OA; Tseng YJ J Chem Inf Model; 2015 Jul; 55(7):1426-34. PubMed ID: 26108525 [TBL] [Abstract][Full Text] [Related]
2. CypRules: a rule-based P450 inhibition prediction server. Shao CY; Su BH; Tu YS; Lin C; Lin OA; Tseng YJ Bioinformatics; 2015 Jun; 31(11):1869-71. PubMed ID: 25617412 [TBL] [Abstract][Full Text] [Related]
3. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. Cheng F; Yu Y; Shen J; Yang L; Li W; Liu G; Lee PW; Tang Y J Chem Inf Model; 2011 May; 51(5):996-1011. PubMed ID: 21491913 [TBL] [Abstract][Full Text] [Related]
4. Structure-based ligand design to overcome CYP inhibition in drug discovery projects. Brändén G; Sjögren T; Schnecke V; Xue Y Drug Discov Today; 2014 Jul; 19(7):905-11. PubMed ID: 24642031 [TBL] [Abstract][Full Text] [Related]
5. Molecular Docking as a Promising Predictive Model for Silver Nanoparticle-Mediated Inhibition of Cytochrome P450 Enzymes. Wasukan N; Kuno M; Maniratanachote R J Chem Inf Model; 2019 Dec; 59(12):5126-5134. PubMed ID: 31714078 [TBL] [Abstract][Full Text] [Related]
6. Modeling chemical interaction profiles: II. Molecular docking, spectral data-activity relationship, and structure-activity relationship models for potent and weak inhibitors of cytochrome P450 CYP3A4 isozyme. Tie Y; McPhail B; Hong H; Pearce BA; Schnackenberg LK; Ge W; Buzatu DA; Wilkes JG; Fuscoe JC; Tong W; Fowler BA; Beger RD; Demchuk E Molecules; 2012 Mar; 17(3):3407-60. PubMed ID: 22421793 [TBL] [Abstract][Full Text] [Related]
7. SuperCYPsPred-a web server for the prediction of cytochrome activity. Banerjee P; Dunkel M; Kemmler E; Preissner R Nucleic Acids Res; 2020 Jul; 48(W1):W580-W585. PubMed ID: 32182358 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Cytochrome P450 Inhibition Using a Deep Learning Approach and Substructure Pattern Recognition. Chen Z; Zhang L; Zhang P; Guo H; Zhang R; Li L; Li X J Chem Inf Model; 2024 Apr; 64(7):2528-2538. PubMed ID: 37864562 [TBL] [Abstract][Full Text] [Related]
9. CYPlebrity: Machine learning models for the prediction of inhibitors of cytochrome P450 enzymes. Plonka W; Stork C; Šícho M; Kirchmair J Bioorg Med Chem; 2021 Sep; 46():116388. PubMed ID: 34488021 [TBL] [Abstract][Full Text] [Related]
10. Inhibitory effects of Hwang-Ryun-Hae-Dok-Tang on cytochrome P450 in human liver microsomes. Lee SY; Jang H; Lee JY; Ma JY; Oh SJ; Kim SK Xenobiotica; 2015 Feb; 45(2):131-8. PubMed ID: 25145883 [TBL] [Abstract][Full Text] [Related]
11. Dynamic and Static Simulations of Fluvoxamine-Perpetrated Drug-Drug Interactions Using Multiple Cytochrome P450 Inhibition Modeling, and Determination of Perpetrator-Specific CYP Isoform Inhibition Constants and Fractional CYP Isoform Contributions to Victim Clearance. Iga K J Pharm Sci; 2016 Mar; 105(3):1307-17. PubMed ID: 26886336 [TBL] [Abstract][Full Text] [Related]
12. 2D SMARTCyp reactivity-based site of metabolism prediction for major drug-metabolizing cytochrome P450 enzymes. Liu R; Liu J; Tawa G; Wallqvist A J Chem Inf Model; 2012 Jun; 52(6):1698-712. PubMed ID: 22631565 [TBL] [Abstract][Full Text] [Related]
13. In vitro assessment of cytochrome P450 inhibition: strategies for increasing LC/MS-based assay throughput using a one-point IC(50) method and multiplexing high-performance liquid chromatography. Lin T; Pan K; Mordenti J; Pan L J Pharm Sci; 2007 Sep; 96(9):2485-93. PubMed ID: 17542019 [TBL] [Abstract][Full Text] [Related]
14. Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes. Juvonen RO; Ahinko M; Huuskonen J; Raunio H; Pentikäinen OT Xenobiotica; 2019 Sep; 49(9):1015-1024. PubMed ID: 30272491 [TBL] [Abstract][Full Text] [Related]
15. A sensitive and high-throughput LC-MS/MS method for inhibition assay of seven major cytochrome P450s in human liver microsomes using an in vitro cocktail of probe substrates. Liu LY; Han YL; Zhu JH; Yu Q; Yang QJ; Lu J; Guo C Biomed Chromatogr; 2015 Mar; 29(3):437-44. PubMed ID: 25098274 [TBL] [Abstract][Full Text] [Related]
16. iCYP-MFE: Identifying Human Cytochrome P450 Inhibitors Using Multitask Learning and Molecular Fingerprint-Embedded Encoding. Nguyen-Vo TH; Trinh QH; Nguyen L; Nguyen-Hoang PU; Nguyen TN; Nguyen DT; Nguyen BP; Le L J Chem Inf Model; 2022 Nov; 62(21):5059-5068. PubMed ID: 34672553 [TBL] [Abstract][Full Text] [Related]
17. In silico prediction of multiple-category classification model for cytochrome P450 inhibitors and non-inhibitors using machine-learning method. Lee JH; Basith S; Cui M; Kim B; Choi S SAR QSAR Environ Res; 2017 Oct; 28(10):863-874. PubMed ID: 29183231 [TBL] [Abstract][Full Text] [Related]
18. Computational prediction of cytochrome P450 inhibition and induction. Kato H Drug Metab Pharmacokinet; 2020 Feb; 35(1):30-44. PubMed ID: 31902468 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous Screening of Activities of Five Cytochrome P450 and Four Uridine 5'-Diphospho-glucuronosyltransferase Enzymes in Human Liver Microsomes Using Cocktail Incubation and Liquid Chromatography-Tandem Mass Spectrometry. Lee B; Ji HK; Lee T; Liu KH Drug Metab Dispos; 2015 Jul; 43(7):1137-46. PubMed ID: 25904760 [TBL] [Abstract][Full Text] [Related]
20. A unified proteochemometric model for prediction of inhibition of cytochrome p450 isoforms. Lapins M; Worachartcheewan A; Spjuth O; Georgiev V; Prachayasittikul V; Nantasenamat C; Wikberg JE PLoS One; 2013; 8(6):e66566. PubMed ID: 23799117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]