These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 26108557)
1. Understanding central carbon metabolism of rapidly proliferating mammalian cells based on analysis of key enzymatic activities in GS-CHO cell lines. Zou W; Al-Rubeai M Biotechnol Appl Biochem; 2016 Sep; 63(5):642-651. PubMed ID: 26108557 [TBL] [Abstract][Full Text] [Related]
2. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis. Nargund S; Qiu J; Goudar CT Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. Neermann J; Wagner R J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765 [TBL] [Abstract][Full Text] [Related]
4. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Sengupta N; Rose ST; Morgan JA Biotechnol Bioeng; 2011 Jan; 108(1):82-92. PubMed ID: 20672285 [TBL] [Abstract][Full Text] [Related]
5. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Ahn WS; Antoniewicz MR Metab Eng; 2011 Sep; 13(5):598-609. PubMed ID: 21821143 [TBL] [Abstract][Full Text] [Related]
6. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Zhao J; Baba T; Mori H; Shimizu K Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115 [TBL] [Abstract][Full Text] [Related]
7. A kinetic-metabolic model based on cell energetic state: study of CHO cell behavior under Na-butyrate stimulation. Ghorbaniaghdam A; Henry O; Jolicoeur M Bioprocess Biosyst Eng; 2013 Apr; 36(4):469-87. PubMed ID: 22976819 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes. Bolten CJ; Heinzle E; Müller R; Wittmann C J Microbiol Biotechnol; 2009 Jan; 19(1):23-36. PubMed ID: 19190405 [TBL] [Abstract][Full Text] [Related]
9. Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism. Ahn WS; Antoniewicz MR Metab Eng; 2013 Jan; 15():34-47. PubMed ID: 23111062 [TBL] [Abstract][Full Text] [Related]
10. An in-silico study of the regulation of CHO cells glycolysis. Ghorbaniaghdam A; Henry O; Jolicoeur M J Theor Biol; 2014 Sep; 357():112-22. PubMed ID: 24801859 [TBL] [Abstract][Full Text] [Related]
11. [2D [1H,13C] NMR study of carbon fluxes during glucose utilization by Escherichia coli MG1655]. Kivero AD; Bocharov EV; Doroshenko VG; Sobol' AG; Dubinnyĭ MA; Arsen'ev AS Prikl Biokhim Mikrobiol; 2008; 44(2):168-75. PubMed ID: 18669258 [TBL] [Abstract][Full Text] [Related]
12. Accelerated Metabolite Levels of Aerobic Glycolysis and the Pentose Phosphate Pathway Are Required for Efficient Replication of Infectious Spleen and Kidney Necrosis Virus in Chinese Perch Brain Cells. Guo X; Wu S; Li N; Lin Q; Liu L; Liang H; Niu Y; Huang Z; Fu X Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31480692 [TBL] [Abstract][Full Text] [Related]
13. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis. Ahn WS; Crown SB; Antoniewicz MR Metab Eng; 2016 Sep; 37():72-78. PubMed ID: 27174718 [TBL] [Abstract][Full Text] [Related]
14. Updates to a Jekabsons MB; Gebril HM; Wang YH; Avula B; Khan IA Neurochem Int; 2017 Oct; 109():54-67. PubMed ID: 28412312 [TBL] [Abstract][Full Text] [Related]
15. Optimal Ratio of Carbon Flux between Glycolysis and the Pentose Phosphate Pathway for Amino Acid Accumulation in Murai K; Sasaki D; Kobayashi S; Yamaguchi A; Uchikura H; Shirai T; Sasaki K; Kondo A; Tsuge Y ACS Synth Biol; 2020 Jul; 9(7):1615-1622. PubMed ID: 32602337 [TBL] [Abstract][Full Text] [Related]
16. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Kathagen A; Schulte A; Balcke G; Phillips HS; Martens T; Matschke J; Günther HS; Soriano R; Modrusan Z; Sandmann T; Kuhl C; Tissier A; Holz M; Krawinkel LA; Glatzel M; Westphal M; Lamszus K Acta Neuropathol; 2013 Nov; 126(5):763-80. PubMed ID: 24005892 [TBL] [Abstract][Full Text] [Related]
17. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
18. Metabolic analysis of antibody producing CHO cells in fed-batch production. Dean J; Reddy P Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898 [TBL] [Abstract][Full Text] [Related]
19. Comparative study on central metabolic fluxes of Bacillus megaterium strains in continuous culture using 13C labelled substrates. Fürch T; Hollmann R; Wittmann C; Wang W; Deckwer WD Bioprocess Biosyst Eng; 2007 Jan; 30(1):47-59. PubMed ID: 17086410 [TBL] [Abstract][Full Text] [Related]
20. Metabolic responses of CHO cells to limitation of key amino acids. Duarte TM; Carinhas N; Barreiro LC; Carrondo MJ; Alves PM; Teixeira AP Biotechnol Bioeng; 2014 Oct; 111(10):2095-106. PubMed ID: 24771076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]