These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage. Mayes WM; Aumônier J; Jarvis AP Water Sci Technol; 2009; 59(11):2253-63. PubMed ID: 19494466 [TBL] [Abstract][Full Text] [Related]
3. Buffering of alkaline steel slag leachate across a natural wetland. Mayes WM; Younger PL; Aumônier J Environ Sci Technol; 2006 Feb; 40(4):1237-43. PubMed ID: 16572781 [TBL] [Abstract][Full Text] [Related]
4. Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Huijgen WJ; Comans RN Environ Sci Technol; 2006 Apr; 40(8):2790-6. PubMed ID: 16683625 [TBL] [Abstract][Full Text] [Related]
5. Hydraulic and biotic impacts on neutralisation of high-pH waters. Gomes HI; Rogerson M; Burke IT; Stewart DI; Mayes WM Sci Total Environ; 2017 Dec; 601-602():1271-1279. PubMed ID: 28605845 [TBL] [Abstract][Full Text] [Related]
6. Environmental behaviour of iron and steel slags in coastal settings. Riley AL; Cameron J; Burke IT; Onnis P; MacDonald JM; Gandy CJ; Crane RA; Byrne P; Comber S; Jarvis AP; Hudson-Edwards KA; Mayes WM Environ Sci Pollut Res Int; 2024 Jun; 31(29):42428-42444. PubMed ID: 38877192 [TBL] [Abstract][Full Text] [Related]
7. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816 [TBL] [Abstract][Full Text] [Related]
8. Environmental impacts of asphalt mixes with electric arc furnace steel slag. Milačič R; Zuliani T; Oblak T; Mladenovič A; Ančar JŠ J Environ Qual; 2011; 40(4):1153-61. PubMed ID: 21712585 [TBL] [Abstract][Full Text] [Related]
9. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags. Yin NH; Sivry Y; Guyot F; Lens PN; van Hullebusch ED J Environ Manage; 2016 Sep; 180():310-23. PubMed ID: 27240207 [TBL] [Abstract][Full Text] [Related]
10. Ettringite and monosulfate formation to reduce alkalinity in reactions of alum-based water treatment residual with steel slag. Özkök E; Davis AP; Aydilek AH Waste Manag; 2019 Feb; 84():1-12. PubMed ID: 30691880 [TBL] [Abstract][Full Text] [Related]
11. Geochemistry of extremely alkaline (pH>12) ground water in slag-fill aquifers. Roadcap GS; Kelly WR; Bethke CM Ground Water; 2005; 43(6):806-16. PubMed ID: 16324002 [TBL] [Abstract][Full Text] [Related]
12. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions. Navarro C; Díaz M; Villa-García MA Environ Sci Technol; 2010 Jul; 44(14):5383-8. PubMed ID: 20568743 [TBL] [Abstract][Full Text] [Related]
13. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag. Stewart DI; Bray AW; Udoma G; Hobson AJ; Mayes WM; Rogerson M; Burke IT Environ Sci Pollut Res Int; 2018 Apr; 25(10):9861-9872. PubMed ID: 29372528 [TBL] [Abstract][Full Text] [Related]
14. Understanding dissolution characteristics of steel slag for resource recovery. Ragipani R; Bhattacharya S; Akkihebbal SK Waste Manag; 2020 Nov; 117():179-187. PubMed ID: 32861080 [TBL] [Abstract][Full Text] [Related]
15. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition. Jin Z; Liu T; Yang Y; Jackson D Ecotoxicol Environ Saf; 2014 Jun; 104():43-50. PubMed ID: 24632122 [TBL] [Abstract][Full Text] [Related]
16. Effects of thin-film accelerated carbonation on steel slag leaching. Baciocchi R; Costa G; Polettini A; Pomi R J Hazard Mater; 2015 Apr; 286():369-78. PubMed ID: 25596552 [TBL] [Abstract][Full Text] [Related]
17. Geochemical and ecotoxicological assessment of iron- and steel-making slags for potential use in environmental applications. Wendling LA; Binet MT; Yuan Z; Gissi F; Koppel DJ; Adams MS Environ Toxicol Chem; 2013 Nov; 32(11):2602-10. PubMed ID: 23929702 [TBL] [Abstract][Full Text] [Related]
18. Steel slag quality control for road construction aggregates and its environmental impact: case study of Vietnamese steel industry-leaching of heavy metals from steel-making slag. Nguyen LH; Nguyen TD; Tran TVN; Nguyen DL; Tran HS; Nguyen TL; Nguyen TH; Nguyen HG; Nguyen TP; Nguyen NT; Isawa T; Ta Y; Sato R Environ Sci Pollut Res Int; 2022 Jun; 29(28):41983-41991. PubMed ID: 34564812 [TBL] [Abstract][Full Text] [Related]
19. Mechanism for alkaline leachate reduction through calcium carbonate precipitation on basic oxygen furnace slag by different carbonate sources: Application of NaHCO Kim SH; Jeong S; Chung H; Nam K Waste Manag; 2020 Feb; 103():122-127. PubMed ID: 31869723 [TBL] [Abstract][Full Text] [Related]
20. Applying steel slag leachate as a reagent substantially enhances pH reduction efficiency for humidification treatment. Chen B; Han L; Yoon S; Lee W; Zhang Y; Yuan L; Choi Y Environ Sci Pollut Res Int; 2020 May; 27(15):18911-18923. PubMed ID: 32207005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]