These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26108895)

  • 1. Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response.
    Jung G; Qin Z; Buehler MJ
    Top Curr Chem; 2015; 369():317-43. PubMed ID: 26108895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.
    Buehler MJ; Ackbarow T
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):595-607. PubMed ID: 18803059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flaw tolerant bulk and surface nanostructures of biological systems.
    Gao H; Ji B; Buehler MJ; Yao H
    Mech Chem Biosyst; 2004 Mar; 1(1):37-52. PubMed ID: 16783945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites.
    Kumar P; Sandeep KP; Alavi S; Truong VD
    J Food Sci; 2011; 76(1):E2-14. PubMed ID: 21535671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation and failure of protein materials in physiologically extreme conditions and disease.
    Buehler MJ; Yung YC
    Nat Mater; 2009 Mar; 8(3):175-88. PubMed ID: 19229265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic simulation of nanomechanical properties of Alzheimer's Abeta(1-40) amyloid fibrils under compressive and tensile loading.
    Paparcone R; Keten S; Buehler MJ
    J Biomech; 2010 Apr; 43(6):1196-201. PubMed ID: 20044089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materiomics: biological protein materials, from nano to macro.
    Cranford S; Buehler MJ
    Nanotechnol Sci Appl; 2010 Nov; 3():127-48. PubMed ID: 24198478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein mechanics: from single molecules to functional biomaterials.
    Li H; Cao Y
    Acc Chem Res; 2010 Oct; 43(10):1331-41. PubMed ID: 20669937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.
    Kurniawan NA; Wong LH; Rajagopalan R
    Biomacromolecules; 2012 Mar; 13(3):691-8. PubMed ID: 22293015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural biological materials: critical mechanics-materials connections.
    Meyers MA; McKittrick J; Chen PY
    Science; 2013 Feb; 339(6121):773-9. PubMed ID: 23413348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales.
    Allison PG; Chandler MQ; Rodriguez RI; Williams BA; Moser RD; Weiss CA; Poda AR; Lafferty BJ; Kennedy AJ; Seiter JM; Hodo WD; Cook RF
    Acta Biomater; 2013 Feb; 9(2):5289-96. PubMed ID: 23149253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations.
    Kulasinski K; Guyer R; Derome D; Carmeliet J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022605. PubMed ID: 26382424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomechanical properties of single amyloid fibrils.
    Sweers KK; Bennink ML; Subramaniam V
    J Phys Condens Matter; 2012 Jun; 24(24):243101. PubMed ID: 22585542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromechanical imaging of biomaterials by scanning probe microscopy.
    Rodriguez BJ; Kalinin SV; Shin J; Jesse S; Grichko V; Thundat T; Baddorf AP; Gruverman A
    J Struct Biol; 2006 Feb; 153(2):151-9. PubMed ID: 16403652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical approach to the unfolding of mechanically stressed biopolymers.
    Jhon MH; Chrzan DC
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):603-6. PubMed ID: 19716104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered nanocomposites inspired by the structure and mechanical properties of nacre.
    Wang J; Cheng Q; Tang Z
    Chem Soc Rev; 2012 Feb; 41(3):1111-29. PubMed ID: 21959863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils.
    Eppell SJ; Smith BN; Kahn H; Ballarini R
    J R Soc Interface; 2006 Feb; 3(6):117-21. PubMed ID: 16849223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale aspects of mechanical properties of biological materials.
    Buehler MJ
    J Mech Behav Biomed Mater; 2011 Feb; 4(2):125-7. PubMed ID: 21262489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.