These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26108947)

  • 1. Evaluation of potential flavonoid inhibitors of glyoxalase-I based on virtual screening and in vitro studies.
    Yadav A; Kumar R; Sunkaria A; Singhal N; Kumar M; Sandhir R
    J Biomol Struct Dyn; 2016 May; 34(5):993-1007. PubMed ID: 26108947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel glyoxalase-I inhibitors possessing a "zinc-binding feature" as potential anticancer agents.
    Al-Balas QA; Hassan MA; Al-Shar'i NA; Mhaidat NM; Almaaytah AM; Al-Mahasneh FM; Isawi IH
    Drug Des Devel Ther; 2016; 10():2623-9. PubMed ID: 27574401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking.
    Al-Shar'i NA; Al-Balas QA; Al-Waqfi RA; Hassan MA; Alkhalifa AE; Ayoub NM
    J Comput Aided Mol Des; 2019 Sep; 33(9):799-815. PubMed ID: 31630312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Armed 1,2,3-Selenadiazole and 1,2,3-Thiadiazole Benzene Derivatives as Novel Glyoxalase-I Inhibitors.
    Al-Balas QA; Al-Smadi ML; Hassan MA; Al Jabal GA; Almaaytah AM; Alzoubi KH
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ellagic acid: A potent glyoxalase-I inhibitor with a unique scaffold.
    Al-Shar'i NA; Al-Balas QA; Hassan MA; El-Elimat TM; Aljabal GA; Almaaytah AM
    Acta Pharm; 2021 Mar; 71(1):115-130. PubMed ID: 32697740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of pharmacophore modeling and 3D-QSAR analysis of potential glyoxalase-I inhibitors as anticancer agents.
    Al-Sha'er MA; Al-Balas QA; Hassan MA; Al Jabal GA; Almaaytah AM
    Comput Biol Chem; 2019 Jun; 80():102-110. PubMed ID: 30947068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational and experimental exploration of the structure-activity relationships of flavonoids as potent glyoxalase-I inhibitors.
    Al-Balas QA; Hassan MA; Al-Shar'i NA; El-Elimat T; Almaaytah AM
    Drug Dev Res; 2018 Mar; 79(2):58-69. PubMed ID: 29285772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationship of human GLO I inhibitory natural flavonoids and their growth inhibitory effects.
    Takasawa R; Takahashi S; Saeki K; Sunaga S; Yoshimori A; Tanuma S
    Bioorg Med Chem; 2008 Apr; 16(7):3969-75. PubMed ID: 18258440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of curcumin derivatives as human glyoxalase I inhibitors: A combination of biological evaluation, molecular docking, 3D-QSAR and molecular dynamics simulation studies.
    Yuan M; Luo M; Song Y; Xu Q; Wang X; Cao Y; Bu X; Ren Y; Hu X
    Bioorg Med Chem; 2011 Feb; 19(3):1189-96. PubMed ID: 21237663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piceatannol, a natural trans-stilbene compound, inhibits human glyoxalase I.
    Takasawa R; Akahane H; Tanaka H; Shimada N; Yamamoto T; Uchida-Maruki H; Sai M; Yoshimori A; Tanuma SI
    Bioorg Med Chem Lett; 2017 Mar; 27(5):1169-1174. PubMed ID: 28169168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular docking and dynamic studies of a potential therapeutic target inhibiting glyoxalase system: Metabolic action of the 3, 3 '- [3- (5-chloro-2-hydroxyphenyl) -3-oxopropane-1, 1-diyl] - Bis-4-hydroxycoumarin leads overexpression of the intracellular level of methylglyoxal and induction of a pro-apoptotic phenomenon in a hepatocellular carcinoma model.
    Taïbi N; Al-Balas QA; Bekari N; Talhi O; Al Jabal GA; Benali Y; Ameraoui R; Hadjadj M; Taïbi A; Boutaiba ZM; Abou-Mustapha M; Khammar F; Dergal F; Hassaine R; Boukenna L; Bachari K; Soares Silva AM
    Chem Biol Interact; 2021 Aug; 345():109511. PubMed ID: 33989593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delphinidin, a dietary anthocyanidin in berry fruits, inhibits human glyoxalase I.
    Takasawa R; Saeki K; Tao A; Yoshimori A; Uchiro H; Fujiwara M; Tanuma S
    Bioorg Med Chem; 2010 Oct; 18(19):7029-33. PubMed ID: 20801663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of the first structure-based pharmacophore model containing a selective "zinc binding group" feature to identify potential glyoxalase-1 inhibitors.
    Al-Balas Q; Hassan M; Al-Oudat B; Alzoubi H; Mhaidat N; Almaaytah A
    Molecules; 2012 Nov; 17(12):13740-58. PubMed ID: 23174893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a new type inhibitor of human glyoxalase I by myricetin-based 4-point pharmacophore.
    Takasawa R; Tao A; Saeki K; Shionozaki N; Tanaka R; Uchiro H; Takahashi S; Yoshimori A; Tanuma S
    Bioorg Med Chem Lett; 2011 Jul; 21(14):4337-42. PubMed ID: 21669529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis and biological evaluation of novel glyoxalase I inhibitors possessing diazenylbenzenesulfonamide moiety as potential anticancer agents.
    Al-Oudat BA; Jaradat HM; Al-Balas QA; Al-Shar'i NA; Bryant-Friedrich A; Bedi MF
    Bioorg Med Chem; 2020 Aug; 28(16):115608. PubMed ID: 32690268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors.
    Raj U; Kumar H; Varadwaj PK
    J Biomol Struct Dyn; 2017 Aug; 35(11):2351-2362. PubMed ID: 27494802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of hydrophobic side chains improve the apoptosis inducibility of the human glyoxalase I inhibitor, TLSC702.
    Azuma M; Inoue M; Nishida A; Akahane H; Kitajima M; Natani S; Chimori R; Yoshimori A; Mano Y; Uchiro H; Tanuma SI; Takasawa R
    Bioorg Med Chem Lett; 2021 May; 40():127918. PubMed ID: 33711442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of anti-filarial leads against aspartate semialdehyde dehydrogenase of Wolbachia endosymbiont of Brugia malayi: combined molecular docking and molecular dynamics approaches.
    Amala M; Rajamanikandan S; Prabhu D; Surekha K; Jeyakanthan J
    J Biomol Struct Dyn; 2019 Feb; 37(2):394-410. PubMed ID: 29334340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors.
    Kumar R; Garg P; Bharatam PV
    J Biomol Struct Dyn; 2015; 33(5):1082-93. PubMed ID: 24875451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel anthraquinone amide derivatives as potential glyoxalase-I inhibitors.
    Al-Akeedi M; Najdawi M; Al-Balas Q; Al-Qazzan MB; Telfah ST
    J Med Life; 2024 Jan; 17(1):87-98. PubMed ID: 38737655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.