These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 26108947)
21. Lead optimization and biological evaluation of diazenylbenzenesulfonamides inhibitors against glyoxalase-I enzyme as potential anticancer agents. Al-Oudat BA; Al-Shar'i NA; Al-Balas QA; Audat SA; Alqudah MAY; Hamzah AH; Hallak RW; Bedi M; Bryant-Friedrich A Bioorg Chem; 2022 Mar; 120():105657. PubMed ID: 35152183 [TBL] [Abstract][Full Text] [Related]
22. Recent Advances in Glyoxalase-I Inhibition. Al-Balas QA; Hassan MA; Al-Shar'i NA; Al Jabal GA; Almaaytah AM Mini Rev Med Chem; 2019; 19(4):281-291. PubMed ID: 30306863 [TBL] [Abstract][Full Text] [Related]
23. Inhibition by active site directed covalent modification of human glyoxalase I. Holewinski RJ; Creighton DJ Bioorg Med Chem; 2014 Jul; 22(13):3301-8. PubMed ID: 24856185 [TBL] [Abstract][Full Text] [Related]
24. Combined High Throughput Screening with QSAR Analysis Unravelling Potential Glyoxalase-I Inhibitors. Al-Sha'er MA; Al-Balas QA; Hassan MA Curr Comput Aided Drug Des; 2020; 16(6):814-832. PubMed ID: 31957614 [TBL] [Abstract][Full Text] [Related]
25. Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Singh P; Bast F Invest New Drugs; 2015 Jun; 33(3):575-93. PubMed ID: 25895100 [TBL] [Abstract][Full Text] [Related]
27. TLSC702, a Novel Inhibitor of Human Glyoxalase I, Induces Apoptosis in Tumor Cells. Takasawa R; Shimada N; Uchiro H; Takahashi S; Yoshimori A; Tanuma S Biol Pharm Bull; 2016; 39(5):869-73. PubMed ID: 27150153 [TBL] [Abstract][Full Text] [Related]
28. Structural basis for 18-β-glycyrrhetinic acid as a novel non-GSH analog glyoxalase I inhibitor. Zhang H; Huang Q; Zhai J; Zhao YN; Zhang LP; Chen YY; Zhang RW; Li Q; Hu XP Acta Pharmacol Sin; 2015 Sep; 36(9):1145-50. PubMed ID: 26279158 [TBL] [Abstract][Full Text] [Related]
29. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors. Lather A; Sharma S; Khatkar A Comb Chem High Throughput Screen; 2018; 21(3):182-193. PubMed ID: 29600755 [TBL] [Abstract][Full Text] [Related]
30. In Vitro Inhibition of Glyoxalase І by Flavonoids: New Insights from Crystallographic Analysis. Zhang H; Zhai J; Zhang L; Li C; Zhao Y; Chen Y; Li Q; Hu XP Curr Top Med Chem; 2016; 16(4):460-6. PubMed ID: 26268338 [TBL] [Abstract][Full Text] [Related]
31. Inhibitory Effect of Isoflavones from Erythrina poeppigiana on the Growth of HL-60 Human Leukemia Cells through Inhibition of Glyoxalase I. Hikita K; Yamada S; Shibata R; Katoh M; Murata T; Kato K; Tanaka H; Kaneda N Nat Prod Commun; 2015 Sep; 10(9):1581-4. PubMed ID: 26594764 [TBL] [Abstract][Full Text] [Related]
32. Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol. Tsitsanou KE; Hayes JM; Keramioti M; Mamais M; Oikonomakos NG; Kato A; Leonidas DD; Zographos SE Food Chem Toxicol; 2013 Nov; 61():14-27. PubMed ID: 23279842 [TBL] [Abstract][Full Text] [Related]
33. Development of novel HER2 inhibitors against gastric cancer derived from flavonoid source of Babu TM; Rammohan A; Baki VB; Devi S; Gunasekar D; Rajendra W Drug Des Devel Ther; 2016; 10():3611-3632. PubMed ID: 27853354 [TBL] [Abstract][Full Text] [Related]
34. Crystal structures of human glyoxalase I and its complex with TLSC702 reveal inhibitor binding mode and substrate preference. Usami M; Ando K; Shibuya A; Takasawa R; Yokoyama H FEBS Lett; 2022 Jun; 596(11):1458-1467. PubMed ID: 35363883 [TBL] [Abstract][Full Text] [Related]
35. Comparative docking of dual conformations in human fatty acid synthase thioesterase domain reveals potential binding cavity for virtual screening of ligands. John A; Vetrivel U; Subramanian K; Deepa PR J Biomol Struct Dyn; 2017 May; 35(6):1350-1366. PubMed ID: 27145135 [TBL] [Abstract][Full Text] [Related]
36. Identification of novel inhibitors against Mycobacterium tuberculosis L-alanine dehydrogenase (MTB-AlaDH) through structure-based virtual screening. Saxena S; Devi PB; Soni V; Yogeeswari P; Sriram D J Mol Graph Model; 2014 Feb; 47():37-43. PubMed ID: 24316937 [TBL] [Abstract][Full Text] [Related]
37. Integration of ligand and structure based approaches for identification of novel MbtI inhibitors in Mycobacterium tuberculosis and molecular dynamics simulation studies. Maganti L; Grandhi P; Ghoshal N J Mol Graph Model; 2016 Nov; 70():14-22. PubMed ID: 27639087 [TBL] [Abstract][Full Text] [Related]
38. Identification of potential inhibitors for AIRS from de novo purine biosynthesis pathway through molecular modeling studies - a computational approach. Rao RG; Biswal J; Dhamodharan P; Kanagarajan S; Jeyaraman J J Biomol Struct Dyn; 2016 Oct; 34(10):2199-213. PubMed ID: 26524231 [TBL] [Abstract][Full Text] [Related]
39. Neural Glyoxalase Pathway Enhancement by Morin Derivatives in an Alzheimer's Disease Model. Frandsen J; Choi SR; Narayanasamy P ACS Chem Neurosci; 2020 Feb; 11(3):356-366. PubMed ID: 31909963 [TBL] [Abstract][Full Text] [Related]
40. Curcumin inhibits glyoxalase 1: a possible link to its anti-inflammatory and anti-tumor activity. Santel T; Pflug G; Hemdan NY; Schäfer A; Hollenbach M; Buchold M; Hintersdorf A; Lindner I; Otto A; Bigl M; Oerlecke I; Hutschenreuther A; Sack U; Huse K; Groth M; Birkemeyer C; Schellenberger W; Gebhardt R; Platzer M; Weiss T; Vijayalakshmi MA; Krüger M; Birkenmeier G PLoS One; 2008; 3(10):e3508. PubMed ID: 18946510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]