These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26109438)

  • 1. Keeping the band together: evidence for false boundary disruptive coloration in a butterfly.
    Seymoure BM; Aiello A
    J Evol Biol; 2015 Sep; 28(9):1618-24. PubMed ID: 26109438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cool Bands: Wing bands decrease rate of heating, but not equilibrium temperature in Anartia fatima.
    Brashears J; Aiello A; Seymoure BM
    J Therm Biol; 2016 Feb; 56():100-8. PubMed ID: 26857983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruptive coloration, crypsis and edge detection in early visual processing.
    Stevens M; Cuthill IC
    Proc Biol Sci; 2006 Sep; 273(1598):2141-7. PubMed ID: 16901833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruptive coloration and background pattern matching.
    Cuthill IC; Stevens M; Sheppard J; Maddocks T; Párraga CA; Troscianko TS
    Nature; 2005 Mar; 434(7029):72-4. PubMed ID: 15744301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruptive coloration provides camouflage independent of background matching.
    Schaefer HM; Stobbe N
    Proc Biol Sci; 2006 Oct; 273(1600):2427-32. PubMed ID: 16959631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warning signals are seductive: relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies.
    Finkbeiner SD; Briscoe AD; Reed RD
    Evolution; 2014 Dec; 68(12):3410-20. PubMed ID: 25200939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of attack deflection suggests adaptive evolution of wing tails in butterflies.
    Chotard A; Ledamoisel J; Decamps T; Herrel A; Chaine AS; Llaurens V; Debat V
    Proc Biol Sci; 2022 May; 289(1975):20220562. PubMed ID: 35611535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prey from the eyes of predators: Color discriminability of aposematic and mimetic butterflies from an avian visual perspective.
    Su S; Lim M; Kunte K
    Evolution; 2015 Nov; 69(11):2985-94. PubMed ID: 26477885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the wave: aerodynamic and aposematic functions of butterfly wing motion.
    Srygley RB
    Proc Biol Sci; 2007 Apr; 274(1612):913-7. PubMed ID: 17264060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth.
    Honma A; Mappes J; Valkonen JK
    Ecol Evol; 2015 Nov; 5(21):4863-74. PubMed ID: 26640666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruptive Coloration in Butterflies: Lack of Support in Anartia fatima.
    Silberglied RE; Aiello A; Windsor DM
    Science; 1980 Aug; 209(4456):617-9. PubMed ID: 17756845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?
    Llaurens V; Joron M; Théry M
    J Evol Biol; 2014 Mar; 27(3):531-40. PubMed ID: 24444083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying camouflage: how to predict detectability from appearance.
    Troscianko J; Skelhorn J; Stevens M
    BMC Evol Biol; 2017 Jan; 17(1):7. PubMed ID: 28056761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent structures in camouflage and mimicry in butterfly wing patterns.
    Suzuki TK; Tomita S; Sezutsu H
    J Morphol; 2019 Jan; 280(1):149-166. PubMed ID: 30556951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The marginal band system in nymphalid butterfly wings.
    Taira W; Kinjo S; Otaki JM
    Zoolog Sci; 2015 Jan; 32(1):38-46. PubMed ID: 25660695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bird predation selects for wing shape and coloration in a damselfly.
    Outomuro D; Johansson F
    J Evol Biol; 2015 Apr; 28(4):791-9. PubMed ID: 25693863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elements of butterfly wing patterns.
    Nijhout HF
    J Exp Zool; 2001 Oct; 291(3):213-25. PubMed ID: 11598911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the effects of species traits on predation risk in nature: A comparative study of butterfly wing damage.
    Molleman F; Javoiš J; Davis RB; Whitaker MRL; Tammaru T; Prinzing A; Õunap E; Wahlberg N; Kodandaramaiah U; Aduse-Poku K; Kaasik A; Carey JR
    J Anim Ecol; 2020 Mar; 89(3):716-729. PubMed ID: 31693172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical tests of the role of disruptive coloration in reducing detectability.
    Fraser S; Callahan A; Klassen D; Sherratt TN
    Proc Biol Sci; 2007 May; 274(1615):1325-31. PubMed ID: 17360282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Butterfly wing colours: scale beads make white pierid wings brighter.
    Stavenga DG; Stowe S; Siebke K; Zeil J; Arikawa K
    Proc Biol Sci; 2004 Aug; 271(1548):1577-84. PubMed ID: 15306303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.