These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 26109905)
1. Deriving forest fire ignition risk with biogeochemical process modelling. Eastaugh CS; Hasenauer H Environ Model Softw; 2014 May; 55():132-142. PubMed ID: 26109905 [TBL] [Abstract][Full Text] [Related]
2. Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition. Santana VM; Marrs RH J Environ Manage; 2014 Jun; 139():88-96. PubMed ID: 24681648 [TBL] [Abstract][Full Text] [Related]
3. Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada. James PM; Robert LE; Wotton BM; Martell DL; Fleming RA Ecol Appl; 2017 Mar; 27(2):532-544. PubMed ID: 27809401 [TBL] [Abstract][Full Text] [Related]
4. Spatio-temporal trends in fire weather in the French Alps. Dupire S; Curt T; Bigot S Sci Total Environ; 2017 Oct; 595():801-817. PubMed ID: 28411563 [TBL] [Abstract][Full Text] [Related]
5. Developing and testing models of the drivers of anthropogenic and lightning-caused wildfire ignitions in south-eastern Australia. Clarke H; Gibson R; Cirulis B; Bradstock RA; Penman TD J Environ Manage; 2019 Apr; 235():34-41. PubMed ID: 30669091 [TBL] [Abstract][Full Text] [Related]
6. A review of the main driving factors of forest fire ignition over Europe. Ganteaume A; Camia A; Jappiot M; San-Miguel-Ayanz J; Long-Fournel M; Lampin C Environ Manage; 2013 Mar; 51(3):651-62. PubMed ID: 23086400 [TBL] [Abstract][Full Text] [Related]
7. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia. Mundo IA; Wiegand T; Kanagaraj R; Kitzberger T J Environ Manage; 2013 Jul; 123():77-87. PubMed ID: 23583868 [TBL] [Abstract][Full Text] [Related]
8. Quantifying the human influence on fire ignition across the western USA. Fusco EJ; Abatzoglou JT; Balch JK; Finn JT; Bradley BA Ecol Appl; 2016 Dec; 26(8):2388-2399. PubMed ID: 27907256 [TBL] [Abstract][Full Text] [Related]
9. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions. Costafreda-Aumedes S; Vega-Garcia C; Comas C J Environ Manage; 2018 Jul; 217():90-99. PubMed ID: 29597111 [TBL] [Abstract][Full Text] [Related]
10. Fire as the dominant driver of central Canadian boreal forest carbon balance. Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883 [TBL] [Abstract][Full Text] [Related]
11. A review of the relationships between drought and forest fire in the United States. Littell JS; Peterson DL; Riley KL; Liu Y; Luce CH Glob Chang Biol; 2016 Jul; 22(7):2353-69. PubMed ID: 27090489 [TBL] [Abstract][Full Text] [Related]
12. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005. Parisien MA; Parks SA; Krawchuk MA; Flannigan MD; Bowman LM; Moritz MA Ecol Appl; 2011 Apr; 21(3):789-805. PubMed ID: 21639045 [TBL] [Abstract][Full Text] [Related]
13. Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific. Gomez C; Mangeas M; Curt T; Ibanez T; Munzinger J; Dumas P; Jérémy A; Despinoy M; Hély C Ecol Evol; 2015 Jan; 5(2):377-90. PubMed ID: 25691965 [TBL] [Abstract][Full Text] [Related]
14. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Bowman DM; Murphy BP; Neyland DL; Williamson GJ; Prior LD Glob Chang Biol; 2014 Mar; 20(3):1008-15. PubMed ID: 24132866 [TBL] [Abstract][Full Text] [Related]
15. Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions. De Angelis A; Ricotta C; Conedera M; Pezzatti GB PLoS One; 2015; 10(2):e0116875. PubMed ID: 25679957 [TBL] [Abstract][Full Text] [Related]
16. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC. Eastaugh CS; Pötzelsberger E; Hasenauer H Tree Physiol; 2011 Mar; 31(3):262-74. PubMed ID: 21512099 [TBL] [Abstract][Full Text] [Related]
17. The dynamics and drivers of fuel and fire in the Portuguese public forest. Fernandes PM; Loureiro C; Guiomar N; Pezzatti GB; Manso FT; Lopes L J Environ Manage; 2014 Dec; 146():373-382. PubMed ID: 25203440 [TBL] [Abstract][Full Text] [Related]
18. Observational evidence of wildfire-promoting soil moisture anomalies. O S; Hou X; Orth R Sci Rep; 2020 Jul; 10(1):11008. PubMed ID: 32620812 [TBL] [Abstract][Full Text] [Related]
19. Response of Sierra Nevada forests to projected climate-wildfire interactions. Liang S; Hurteau MD; Westerling AL Glob Chang Biol; 2017 May; 23(5):2016-2030. PubMed ID: 27801532 [TBL] [Abstract][Full Text] [Related]
20. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Kang S; Kimball JS; Running SW Sci Total Environ; 2006 Jun; 362(1-3):85-102. PubMed ID: 16364407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]