BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26109965)

  • 1. A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule-based system.
    Marateb HR; Goudarzi S
    J Res Med Sci; 2015 Mar; 20(3):214-23. PubMed ID: 26109965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hybrid Data Mining Model to Predict Coronary Artery Disease Cases Using Non-Invasive Clinical Data.
    Verma L; Srivastava S; Negi PC
    J Med Syst; 2016 Jul; 40(7):178. PubMed ID: 27286983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single photon emission computed tomography for the diagnosis of coronary artery disease: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(8):1-64. PubMed ID: 23074411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profile-based assessment of diseases affective factors using fuzzy association rule mining approach: A case study in heart diseases.
    Yavari A; Rajabzadeh A; Abdali-Mohammadi F
    J Biomed Inform; 2021 Apr; 116():103695. PubMed ID: 33549658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimal Patient Clinical Variables to Accurately Predict Stress Echocardiography Outcome: Validation Study Using Machine Learning Techniques.
    Bennasar M; Banks D; Price BA; Kardos A
    JMIR Cardio; 2020 May; 4(1):e16975. PubMed ID: 32469316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuzzy Rule-Based Classification System for Assessing Coronary Artery Disease.
    Mohammadpour RA; Abedi SM; Bagheri S; Ghaemian A
    Comput Math Methods Med; 2015; 2015():564867. PubMed ID: 26448783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non - invasive modelling methodology for the diagnosis of coronary artery disease using fuzzy cognitive maps.
    Apostolopoulos ID; Groumpos PP
    Comput Methods Biomech Biomed Engin; 2020 Sep; 23(12):879-887. PubMed ID: 32432903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-test probability for coronary artery disease in patients with chest pain based on machine learning techniques.
    Choi BG; Park JY; Rha SW; Noh YK
    Int J Cardiol; 2023 Aug; 385():85-93. PubMed ID: 37230426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced fuzzy cognitive maps: state-space and rule-based methodology for coronary artery disease detection.
    Apostolopoulos ID; Groumpos PP; Apostolopoulos DJ
    Biomed Phys Eng Express; 2021 May; 7(4):. PubMed ID: 33930876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.
    Velusamy D; Ramasamy K
    Comput Methods Programs Biomed; 2021 Jan; 198():105770. PubMed ID: 33027698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 64-slice computed tomographic angiography for the diagnosis of intermediate risk coronary artery disease: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(11):1-44. PubMed ID: 23074388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary artery disease detection using a fuzzy-boosting PSO approach.
    Ghadiri Hedeshi N; Saniee Abadeh M
    Comput Intell Neurosci; 2014; 2014():783734. PubMed ID: 24817883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-detector computed tomography angiography for coronary artery disease: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(5):1-57. PubMed ID: 23074474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification.
    Pota M; Scalco E; Sanguineti G; Farneti A; Cattaneo GM; Rizzo G; Esposito M
    Artif Intell Med; 2017 Sep; 81():41-53. PubMed ID: 28325604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining a gravitational search algorithm, particle swarm optimization, and fuzzy rules to improve the classification performance of a feed-forward neural network.
    Huang ML; Chou YC
    Comput Methods Programs Biomed; 2019 Oct; 180():105016. PubMed ID: 31442736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mortality prediction in intensive care units (ICUs) using a deep rule-based fuzzy classifier.
    Davoodi R; Moradi MH
    J Biomed Inform; 2018 Mar; 79():48-59. PubMed ID: 29471111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced diagnosis of coronary artery disease in women by dobutamine thallium-201 ST-segment/heart rate slope and thallium-201 myocardial SPECT.
    Yeih DF; Huang PJ; Ho YL
    J Formos Med Assoc; 2007 Oct; 106(10):832-9. PubMed ID: 17964962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of patients for myocardial perfusion scintigraphy based on fuzzy sets theory applied to clinical-epidemiological data and treadmill test results.
    Duarte PS; Mastrocolla LE; Farsky PS; Sampaio CR; Tonelli PA; Barros LC; Ortega NR; Pereira JC
    Braz J Med Biol Res; 2006 Jan; 39(1):9-18. PubMed ID: 16400460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress echocardiography for the diagnosis of coronary artery disease: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(9):1-61. PubMed ID: 23074412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac magnetic resonance imaging for the diagnosis of coronary artery disease: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(12):1-38. PubMed ID: 23074389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.