BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26110200)

  • 41. Discovery of Pyridinyl Acetamide Derivatives as Potent, Selective, and Orally Bioavailable Porcupine Inhibitors.
    Cheng D; Liu J; Han D; Zhang G; Gao W; Hsieh MH; Ng N; Kasibhatla S; Tompkins C; Li J; Steffy A; Sun F; Li C; Seidel HM; Harris JL; Pan S
    ACS Med Chem Lett; 2016 Jul; 7(7):676-80. PubMed ID: 27437076
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine.
    Gao X; Hannoush RN
    Nat Chem Biol; 2014 Jan; 10(1):61-8. PubMed ID: 24292069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy.
    Madan B; McDonald MJ; Foxa GE; Diegel CR; Williams BO; Virshup DM
    Bone Res; 2018; 6():17. PubMed ID: 29844946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical Modulation of WNT Signaling in Cancer.
    Zhang LS; Lum L
    Prog Mol Biol Transl Sci; 2018 Jan; 153():245-269. PubMed ID: 29389519
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional regulation of Wnt protein through post-translational modifications.
    Yu J; Virshup DM
    Biochem Soc Trans; 2022 Dec; 50(6):1797-1808. PubMed ID: 36484635
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of novel dual binders as potent, selective, and orally bioavailable tankyrase inhibitors.
    Hua Z; Bregman H; Buchanan JL; Chakka N; Guzman-Perez A; Gunaydin H; Huang X; Gu Y; Berry V; Liu J; Teffera Y; Huang L; Egge B; Emkey R; Mullady EL; Schneider S; Andrews PS; Acquaviva L; Dovey J; Mishra A; Newcomb J; Saffran D; Serafino R; Strathdee CA; Turci SM; Stanton M; Wilson C; Dimauro EF
    J Med Chem; 2013 Dec; 56(24):10003-15. PubMed ID: 24294969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective Irreversible Inhibitors of the Wnt-Deacylating Enzyme NOTUM Developed by Activity-Based Protein Profiling.
    Suciu RM; Cognetta AB; Potter ZE; Cravatt BF
    ACS Med Chem Lett; 2018 Jun; 9(6):563-568. PubMed ID: 29937983
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Porcupine-dependent Wnt signaling controls stromal proliferation and endometrial gland maintenance through the action of distinct WNTs.
    Farah O; Biechele S; Rossant J; Dufort D
    Dev Biol; 2017 Feb; 422(1):58-69. PubMed ID: 27965056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Porcn as a novel therapeutic target in cancer therapy:  A review.
    Raeisi M; Saberivand M; Velaei K; Aghaei N; Rahimi-Farsi N; Kharrati-Shishavan H; Hassanzadeh D; Mehdizadeh A
    Cell Biol Int; 2022 Dec; 46(12):1979-1991. PubMed ID: 35971741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine.
    Zhai L; Chaturvedi D; Cumberledge S
    J Biol Chem; 2004 Aug; 279(32):33220-7. PubMed ID: 15166250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Secretion of Wnts is dispensable for hematopoiesis.
    Oostendorp RA
    Blood; 2015 Aug; 126(9):1051-2. PubMed ID: 26316612
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Wnt Pathway Inhibitor RXC004 Blocks Tumor Growth and Reverses Immune Evasion in Wnt Ligand-dependent Cancer Models.
    Phillips C; Bhamra I; Eagle C; Flanagan E; Armer R; Jones CD; Bingham M; Calcraft P; Edmenson Cook A; Thompson B; Woodcock SA
    Cancer Res Commun; 2022 Sep; 2(9):914-928. PubMed ID: 36922934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gone with the Wnt(less): a mechanistic perspective on the journey of Wnt.
    Mani N; Nygaard R; Mancia F
    Biochem Soc Trans; 2022 Dec; 50(6):1763-1772. PubMed ID: 36416660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway.
    Lu H; Tonge PJ
    Acc Chem Res; 2008 Jan; 41(1):11-20. PubMed ID: 18193820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Delivery of the Porcupine Inhibitor WNT974 in Mice.
    Zhang LS; Lum L
    Methods Mol Biol; 2016; 1481():111-7. PubMed ID: 27590157
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of the WNT1 residues required for palmitoylation by Porcupine.
    Miranda M; Galli LM; Enriquez M; Szabo LA; Gao X; Hannoush RN; Burrus LW
    FEBS Lett; 2014 Dec; 588(24):4815-24. PubMed ID: 25451226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of small molecule sphingomyelin synthase inhibitors.
    Deng X; Lin F; Zhang Y; Li Y; Zhou L; Lou B; Li Y; Dong J; Ding T; Jiang X; Wang R; Ye D
    Eur J Med Chem; 2014 Feb; 73():1-7. PubMed ID: 24374347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.
    Kabiri Z; Greicius G; Madan B; Biechele S; Zhong Z; Zaribafzadeh H; Edison ; Aliyev J; Wu Y; Bunte R; Williams BO; Rossant J; Virshup DM
    Development; 2014 Jun; 141(11):2206-15. PubMed ID: 24821987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell biology. The unusual case of Porcupine.
    Lum L; Clevers H
    Science; 2012 Aug; 337(6097):922-3. PubMed ID: 22923569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discovery and optimization of 2-phenyloxazole derivatives as diacylglycerol acyltransferase-1 inhibitors.
    Yun W; Ahmad M; Chen Y; Gillespie P; Conde-Knape K; Kazmer S; Li S; Qian Y; Taub R; Wertheimer SJ; Whittard T; Bolin D
    Bioorg Med Chem Lett; 2011 Dec; 21(23):7205-9. PubMed ID: 22001092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.