These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26110265)

  • 21. Engineering the Ionic Self-Assembly of Polyoxometalates and Facial-Like Peptides.
    Li J; Li X; Xu J; Wang Y; Wu L; Wang Y; Wang L; Lee M; Li W
    Chemistry; 2016 Oct; 22(44):15751-15759. PubMed ID: 27621229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designed high affinity Cu2+-binding alpha-helical foldamer.
    Nicoll AJ; Miller DJ; Fütterer K; Ravelli R; Allemann RK
    J Am Chem Soc; 2006 Jul; 128(28):9187-93. PubMed ID: 16834392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smooth and conductive DNA-templated Cu₂O nanowires: growth morphology, spectroscopic and electrical characterization.
    Hassanien R; Al-Said SA; Siller L; Little R; Wright NG; Houlton A; Horrocks BR
    Nanotechnology; 2012 Feb; 23(7):075601. PubMed ID: 22261265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.
    Long YZ; Yu M; Sun B; Gu CZ; Fan Z
    Chem Soc Rev; 2012 Jun; 41(12):4560-80. PubMed ID: 22573265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of histidine containing peptides for better understanding of their coordination mode toward copper(II) by CD spectroscopy.
    Jakab NI; Gyurcsik B; Körtvélyesi T; Vosekalna I; Jensen J; Larsen E
    J Inorg Biochem; 2007 Oct; 101(10):1376-85. PubMed ID: 17628687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of glutathione S-transferase into nanowires.
    Zhang W; Luo Q; Miao L; Hou C; Bai Y; Dong Z; Xu J; Liu J
    Nanoscale; 2012 Sep; 4(19):5847-51. PubMed ID: 22907071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO(2) nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties.
    Zhang M; Shao C; Guo Z; Zhang Z; Mu J; Cao T; Liu Y
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):369-77. PubMed ID: 21218852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A doppel alpha-helix peptide fragment mimics the copper(II) interactions with the whole protein.
    La Mendola D; Magrì A; Campagna T; Campitiello MA; Raiola L; Isernia C; Hansson O; Bonomo RP; Rizzarelli E
    Chemistry; 2010 Jun; 16(21):6212-23. PubMed ID: 20411530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the Peptidic Scaffold in Copper(II) Coordination and the Redox Properties of Short Histidine-Containing Peptides.
    Fragoso A; Carvalho T; Rousselot-Pailley P; Correia Dos Santos MM; Delgado R; Iranzo O
    Chemistry; 2015 Sep; 21(37):13100-11. PubMed ID: 26227175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and mass spectrometric characterization of a metal-affinity decapeptide: copper-induced conformational changes.
    Murariu M; Dragan ES; Drochioiu G
    Biomacromolecules; 2007 Dec; 8(12):3836-41. PubMed ID: 17979241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal chelates anchored to poly-L-peptides and linear D,L-α-peptides with promising nanotechnological applications.
    Punzi P; Giordano C; Marino F; Morosetti S; De Santis P; Scipioni A
    Nanotechnology; 2012 Oct; 23(39):395703. PubMed ID: 22972390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Au nanowire fabrication from sequenced histidine-rich peptide.
    Djalali R; Chen YF; Matsui H
    J Am Chem Soc; 2002 Nov; 124(46):13660-1. PubMed ID: 12431080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The coordination abilities of the multiHis-cyclopeptide with two metal-binding centers--potentiometric and spectroscopic investigation.
    Kotynia A; Bielińska S; Kamysz W; Brasuń J
    Dalton Trans; 2012 Oct; 41(39):12114-20. PubMed ID: 22918544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectroscopic identification of different types of copper centers generated in synthetic four-helix bundle proteins.
    Schnepf R; Haehnel W; Wieghardt K; Hildebrandt P
    J Am Chem Soc; 2004 Nov; 126(44):14389-99. PubMed ID: 15521758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shape-specific nanofibers via self-assembly of three-branched peptide.
    Koga T; Matsui H; Matsumoto T; Higashi N
    J Colloid Interface Sci; 2011 Jun; 358(1):81-5. PubMed ID: 21429499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteins and peptides as biological nanowires: towards biosensing devices.
    Domigan LJ
    Methods Mol Biol; 2013; 996():131-52. PubMed ID: 23504422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A peptide model of the copper-binding region of lysyl oxidase.
    Ryvkin F; Greenaway FT
    J Inorg Biochem; 2004 Aug; 98(8):1427-35. PubMed ID: 15271521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disproportionation for growing copper nanowires and their controlled self-assembly facilitated by ligand exchange.
    Ye E; Zhang SY; Liu S; Han MY
    Chemistry; 2011 Mar; 17(11):3074-7. PubMed ID: 21308814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper(II) coordination properties of decapeptides containing three His residues: the impact of cyclization and Asp residue coordination.
    Fragoso A; Delgado R; Iranzo O
    Dalton Trans; 2013 May; 42(17):6182-92. PubMed ID: 23529654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembled peptide nanofiber templated one-dimensional gold nanostructures exhibiting resistive switching.
    Acar H; Genc R; Urel M; Erkal TS; Dana A; Guler MO
    Langmuir; 2012 Nov; 28(47):16347-54. PubMed ID: 23110318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.