These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 26110411)

  • 1. Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes.
    Ding S; Cargill AA; Das SR; Medintz IL; Claussen JC
    Sensors (Basel); 2015 Jun; 15(6):14766-87. PubMed ID: 26110411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent Biosensors for the Detection of Viruses Using Graphene and Two-Dimensional Carbon Nanomaterials.
    Salama AM; Yasin G; Zourob M; Lu J
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured Carbons: Towards Soft-Bioelectronics, Biosensing and Theraputic Applications.
    Marzana M; Morsada Z; Faruk MO; Ahmed A; Khan MMA; Jalil MA; Hossain MM; Rahman MM
    Chem Rec; 2022 Jul; 22(7):e202100319. PubMed ID: 35189015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors.
    Ranjan P; Yadav S; Sadique MA; Khan R; Chaurasia JP; Srivastava AK
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FÖrster resonance energy transfer (FRET)-based biosensors for biological applications.
    Zhang X; Hu Y; Yang X; Tang Y; Han S; Kang A; Deng H; Chi Y; Zhu D; Lu Y
    Biosens Bioelectron; 2019 Aug; 138():111314. PubMed ID: 31096114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level.
    Qaddare SH; Salimi A
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):773-780. PubMed ID: 27816581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications.
    Kim JE; Choi JH; Colas M; Kim DH; Lee H
    Biosens Bioelectron; 2016 Jun; 80():543-559. PubMed ID: 26894985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine.
    Wujcik EK; Monty CN
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(3):233-49. PubMed ID: 23450525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotubes as optical biomedical sensors.
    Kruss S; Hilmer AJ; Zhang J; Reuel NF; Mu B; Strano MS
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1933-50. PubMed ID: 23906934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient turn-on fluorescence biosensor for the detection of glutathione based on FRET between N,S dual-doped carbon dots and gold nanoparticles.
    Dong W; Wang R; Gong X; Dong C
    Anal Bioanal Chem; 2019 Oct; 411(25):6687-6695. PubMed ID: 31407048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer.
    Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N
    Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-quantum dot based Förster resonant energy transfer: key parameters for high-efficiency biosensing.
    Hottechamps J; Noblet T; Méthivier C; Boujday S; Dreesen L
    Nanoscale; 2023 Feb; 15(6):2614-2623. PubMed ID: 36648212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection.
    Muniandy S; Teh SJ; Thong KL; Thiha A; Dinshaw IJ; Lai CW; Ibrahim F; Leo BF
    Crit Rev Anal Chem; 2019; 49(6):510-533. PubMed ID: 30648398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform.
    Mondal J; An JM; Surwase SS; Chakraborty K; Sutradhar SC; Hwang J; Lee J; Lee YK
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.
    Qian ZS; Shan XY; Chai LJ; Ma JJ; Chen JR; Feng H
    Biosens Bioelectron; 2014 Oct; 60():64-70. PubMed ID: 24768864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Allotrope-Based Optical Fibers for Environmental and Biological Sensing: A Review.
    Yap SHK; Chan KK; Tjin SC; Yong KT
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live cell biosensing platforms using graphene-based hybrid nanomaterials.
    Kim TH; Lee D; Choi JW
    Biosens Bioelectron; 2017 Aug; 94():485-499. PubMed ID: 28342377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanomaterials in biosensors: should you use nanotubes or graphene?
    Yang W; Ratinac KR; Ringer SP; Thordarson P; Gooding JJ; Braet F
    Angew Chem Int Ed Engl; 2010 Mar; 49(12):2114-38. PubMed ID: 20187048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications.
    Tian F; Lyu J; Shi J; Yang M
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):123-135. PubMed ID: 27342369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of FRET biosensors for mammalian and plant systems.
    Hamers D; van Voorst Vader L; Borst JW; Goedhart J
    Protoplasma; 2014 Mar; 251(2):333-47. PubMed ID: 24337770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.