These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26110412)

  • 1. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.
    Xing J; Chen J
    Sensors (Basel); 2015 Jun; 15(6):14788-808. PubMed ID: 26110412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and characterization of a close-proximity thermoacoustic sensor.
    Xing J; Choi M; Ang W; Yu X; Chen J
    Ultrasound Med Biol; 2013 Sep; 39(9):1613-22. PubMed ID: 23820248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a thermoacoustic sensor adaptive to ambient temperatures.
    Xing J; Ang W; Lim A; Yu X; Chen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():624-7. PubMed ID: 24109764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoacoustic sensor for ultrasound power measurements and ultrasonic equipment calibration.
    Fay B; Rinker M; Lewin PA
    Ultrasound Med Biol; 1994; 20(4):367-73. PubMed ID: 8085293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensity-related differences in collagen post-translational modification in MC3T3-E1 osteoblasts after exposure to low- and high-intensity pulsed ultrasound.
    Saito M; Soshi S; Tanaka T; Fujii K
    Bone; 2004 Sep; 35(3):644-55. PubMed ID: 15336600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.
    Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F
    Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercomparison of acoustic output measurements of a diagnostic ultrasound device.
    Beissner K
    Ultrasound Med Biol; 1999 May; 25(4):629-36. PubMed ID: 10386739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.
    Battista L; Sciuto SA; Scorza A
    Rev Sci Instrum; 2013 Mar; 84(3):035005. PubMed ID: 23556844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Miniaturized Low-Intensity Ultrasound Device for Wearable Medical Therapeutic Applications.
    Jiang X; Ng WT; Chen J
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1372-1382. PubMed ID: 31613782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and testing of low intensity laser biostimulator.
    Valchinov ES; Pallikarakis NE
    Biomed Eng Online; 2005 Jan; 4():5. PubMed ID: 15649327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging.
    Yu Y; Shen G; Zhou Y; Bai J; Chen Y
    Ultrasound Med Biol; 2013 Nov; 39(11):2021-33. PubMed ID: 23972377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor calibration and compensation using artificial neural network.
    Khan SA; Shahani DT; Agarwala AK
    ISA Trans; 2003 Jul; 42(3):337-52. PubMed ID: 12858970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Calibration Algorithm for a Pressure Sensor with a Real-Time Approach Based on an Artificial Neural Network.
    Almassri AMM; Wan Hasan WZ; Ahmad SA; Shafie S; Wada C; Horio K
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal power evaluation after myopic corneal refractive surgery using artificial neural networks.
    Koprowski R; Lanza M; Irregolare C
    Biomed Eng Online; 2016 Nov; 15(1):121. PubMed ID: 27846894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a microfabricated optical bend loss sensor for distributive pressure measurement.
    Wang WC; Ledoux WR; Huang CY; Huang CS; Klute GK; Reinhall PG
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):614-25. PubMed ID: 18269997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.
    Zhou Y
    Med Eng Phys; 2015 Mar; 37(3):335-40. PubMed ID: 25659300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Validation of a Ten-Port Waveguide Reflectometer Sensor: Application to Efficiency Measurement and Optimization of Microwave-Heating Ovens.
    Pedreño-Molina JL; Monzó-Cabrera J; Lozano-Guerrero A; Toledo-Moreo A
    Sensors (Basel); 2008 Dec; 8(12):7833-7849. PubMed ID: 27873961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.