These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 26110505)

  • 21. The European FP7 Venomics Project.
    Gilles N; Servent D
    Future Med Chem; 2014 Oct; 6(15):1611-2. PubMed ID: 25406001
    [No Abstract]   [Full Text] [Related]  

  • 22. Combinations of long peptide sequence blocks can be used to describe toxin diversification in venomous animals.
    Starcevic A; Moura-da-Silva AM; Cullum J; Hranueli D; Long PF
    Toxicon; 2015 Mar; 95():84-92. PubMed ID: 25595734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fossilized venom: the unusually conserved venom profiles of Heloderma species (beaded lizards and gila monsters).
    Koludarov I; Jackson TN; Sunagar K; Nouwens A; Hendrikx I; Fry BG
    Toxins (Basel); 2014 Dec; 6(12):3582-95. PubMed ID: 25533521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.
    Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG
    J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinformatics for venom and toxin sciences.
    Tan PT; Khan AM; Brusic V
    Brief Bioinform; 2003 Mar; 4(1):53-62. PubMed ID: 12715834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Venomics, what else?
    Calvete JJ
    Toxicon; 2012 Sep; 60(4):427-33. PubMed ID: 22728104
    [No Abstract]   [Full Text] [Related]  

  • 27. Adaptive evolution of animal toxin multigene families.
    Kordis D; Gubensek F
    Gene; 2000 Dec; 261(1):43-52. PubMed ID: 11164036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Venomics in medicinal chemistry.
    Dutertre S
    Future Med Chem; 2014 Oct; 6(15):1609-10. PubMed ID: 25406000
    [No Abstract]   [Full Text] [Related]  

  • 29. An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation.
    Prashanth JR; Lewis RJ
    Toxicon; 2015 Dec; 107(Pt B):282-9. PubMed ID: 26376071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling snake venom complexity with 'omics' approaches: challenges and perspectives.
    Zelanis A; Tashima AK
    Toxicon; 2014 Sep; 87():131-4. PubMed ID: 24878375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil.
    Jorge RJ; Monteiro HS; Gonçalves-Machado L; Guarnieri MC; Ximenes RM; Borges-Nojosa DM; Luna KP; Zingali RB; Corrêa-Netto C; Gutiérrez JM; Sanz L; Calvete JJ; Pla D
    J Proteomics; 2015 Jan; 114():93-114. PubMed ID: 25462430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches.
    Petras D; Heiss P; Süssmuth RD; Calvete JJ
    J Proteome Res; 2015 Jun; 14(6):2539-56. PubMed ID: 25896403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nemertean toxin genes revealed through transcriptome sequencing.
    Whelan NV; Kocot KM; Santos SR; Halanych KM
    Genome Biol Evol; 2014 Nov; 6(12):3314-25. PubMed ID: 25432940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Venomics: a new paradigm for natural products-based drug discovery.
    Vetter I; Davis JL; Rash LD; Anangi R; Mobli M; Alewood PF; Lewis RJ; King GF
    Amino Acids; 2011 Jan; 40(1):15-28. PubMed ID: 20177945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overview of molecular, cellular, and genetic neurotoxicology.
    Wallace DR
    Neurol Clin; 2005 May; 23(2):307-20. PubMed ID: 15757786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Animal toxins and human disease: from single component to venomics, from biochemical characterization to disease mechanisms, from crude venom utilization to rational drug design].
    Lu QM; Lai R; Zhang Y
    Dongwuxue Yanjiu; 2010 Feb; 31(1):2-16. PubMed ID: 20446448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management.
    Boldrini-França J; Corrêa-Netto C; Silva MM; Rodrigues RS; De La Torre P; Pérez A; Soares AM; Zingali RB; Nogueira RA; Rodrigues VM; Sanz L; Calvete JJ
    J Proteomics; 2010 Aug; 73(9):1758-76. PubMed ID: 20542151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Structures and functions of animal toxins].
    Guenneugues M; Ménez A
    C R Seances Soc Biol Fil; 1997; 191(3):329-44. PubMed ID: 9295963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications.
    Fry BG; Wüster W; Ryan Ramjan SF; Jackson T; Martelli P; Kini RM
    Rapid Commun Mass Spectrom; 2003; 17(18):2047-62. PubMed ID: 12955733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.