These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 26110823)

  • 21. Droplet Sliding: The Numerical Observation of Multiple Contact Angle Hysteresis.
    Wang Y; Zhao J; Zhang D; Jian M; Liu H; Zhang X
    Langmuir; 2019 Jul; 35(30):9970-9978. PubMed ID: 31295001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface.
    Zhao Y; Lu Q; Li M; Li X
    Langmuir; 2007 May; 23(11):6212-7. PubMed ID: 17465584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis.
    Lam CN; Wu R; Li D; Hair ML; Neumann AW
    Adv Colloid Interface Sci; 2002 Feb; 96(1-3):169-91. PubMed ID: 11911113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic behavior of water droplets on solid surfaces with pillar-type nanostructures.
    Jeong WJ; Ha MY; Yoon HS; Ambrosia M
    Langmuir; 2012 Mar; 28(12):5360-71. PubMed ID: 22385413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Receding Contact Line Motion on Nanopatterned and Micropatterned Polymer Surfaces.
    Gao N; Chiu M; Neto C
    Langmuir; 2017 Nov; 33(44):12602-12608. PubMed ID: 29016148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contact-line fluctuations and dynamic wetting.
    Fernández-Toledano JC; Blake TD; De Coninck J
    J Colloid Interface Sci; 2019 Mar; 540():322-329. PubMed ID: 30660790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
    Shigorina E; Kordilla J; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling the pinning time of a receding contact line under forced wetting conditions.
    Fernández-Toledano JC; Rigaut C; Mastrangeli M; De Coninck J
    J Colloid Interface Sci; 2020 Apr; 565():449-457. PubMed ID: 31982711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale wetting on groove-patterned surfaces.
    Yong X; Zhang LT
    Langmuir; 2009 May; 25(9):5045-53. PubMed ID: 19326936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: slip, films, and contact-angle hysteresis.
    Colosqui CE; Kavousanakis ME; Papathanasiou AG; Kevrekidis IG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013302. PubMed ID: 23410455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A theory for the morphological dependence of wetting on a physically patterned solid surface.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2012 Oct; 28(40):14227-37. PubMed ID: 22998115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can dynamic contact angle be measured using molecular modeling?
    Malani A; Raghavanpillai A; Wysong EB; Rutledge GC
    Phys Rev Lett; 2012 Nov; 109(18):184501. PubMed ID: 23215283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generalized models for advancing and receding contact angles of fakir droplets on pillared and pored surfaces.
    Jiang Y; Xu W; Sarshar MA; Choi CH
    J Colloid Interface Sci; 2019 Sep; 552():359-371. PubMed ID: 31132638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contact angle hysteresis on fluoropolymer surfaces.
    Tavana H; Jehnichen D; Grundke K; Hair ML; Neumann AW
    Adv Colloid Interface Sci; 2007 Oct; 134-135():236-48. PubMed ID: 17537391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A thermodynamic model of contact angle hysteresis.
    Makkonen L
    J Chem Phys; 2017 Aug; 147(6):064703. PubMed ID: 28810760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.
    Promraksa A; Chen LJ
    J Colloid Interface Sci; 2012 Oct; 384(1):172-81. PubMed ID: 22818957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How pinning and contact angle hysteresis govern quasi-static liquid drop transfer.
    Chen H; Tang T; Zhao H; Law KY; Amirfazli A
    Soft Matter; 2016 Feb; 12(7):1998-2008. PubMed ID: 26777599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.
    Raj R; Enright R; Zhu Y; Adera S; Wang EN
    Langmuir; 2012 Nov; 28(45):15777-88. PubMed ID: 23057739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.