These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 26111099)
1. Experimental validation of the dual parameter beam quality specifier for reference dosimetry in flattening-filter-free (FFF) photon beams. Simpson E; Gajewski R; Flower E; Stensmyr R Phys Med Biol; 2015 Jul; 60(14):N271-81. PubMed ID: 26111099 [TBL] [Abstract][Full Text] [Related]
2. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams. Dalaryd M; Knöös T; Ceberg C Med Phys; 2014 Nov; 41(11):111716. PubMed ID: 25370630 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo-based investigations on the impact of removing the flattening filter on beam quality specifiers for photon beam dosimetry. Czarnecki D; Poppe B; Zink K Med Phys; 2017 Jun; 44(6):2569-2580. PubMed ID: 28369978 [TBL] [Abstract][Full Text] [Related]
4. Experimental and Monte Carlo-based determination of the beam quality specifier for TomoTherapyHD treatment units. Howitz S; Schwedas M; Wiezorek T; Zink K Z Med Phys; 2018 Apr; 28(2):142-149. PubMed ID: 29031915 [TBL] [Abstract][Full Text] [Related]
5. Relationship between %dd(10)x and stopping-power ratios for flattening filter free accelerators: a Monte Carlo study. Xiong G; Rogers DW Med Phys; 2008 May; 35(5):2104-9. PubMed ID: 18561686 [TBL] [Abstract][Full Text] [Related]
6. Prediction of stopping-power ratios in flattening-filter free beams. Ceberg C; Johnsson S; Lind M; Knöös T Med Phys; 2010 Mar; 37(3):1164-8. PubMed ID: 20384253 [TBL] [Abstract][Full Text] [Related]
7. Extending the IAEA-AAPM TRS-483 methodology for radiation therapy machines with field sizes down to 10 × 2 cm Mirzakhanian L; Bassalow R; Huntzinger C; Seuntjens J Med Phys; 2020 Oct; 47(10):5209-5221. PubMed ID: 32815187 [TBL] [Abstract][Full Text] [Related]
8. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams. Kuess P; Georg D; Palmans H; Lechner W Med Phys; 2016 Aug; 43(8):4507. PubMed ID: 27487867 [TBL] [Abstract][Full Text] [Related]
9. Comparison between the TRS-398 code of practice and the TG-51 dosimetry protocol for flattening filter free beams. Lye JE; Butler DJ; Oliver CP; Alves A; Lehmann J; Gibbons FP; Williams IM Phys Med Biol; 2016 Jul; 61(14):N362-72. PubMed ID: 27366933 [TBL] [Abstract][Full Text] [Related]
10. A dosimetric evaluation of the IAEA-AAPM TRS483 code of practice for dosimetry of small static fields used in conventional linac beams and comparison with IAEA TRS-398, AAPM TG51, and TG51 Addendum protocols. Huq MS; Hwang MS; Teo TP; Jang SY; Heron DE; Lalonde RJ Med Phys; 2018 Jul; ():. PubMed ID: 30009526 [TBL] [Abstract][Full Text] [Related]
11. Quantification of the role of lead foil in flattening filter free beam reference dosimetry. Gao S; Nelson C; Wang C; Kathriarachchi V; Choi M; Saxena R; Kendall R; Balter P J Appl Clin Med Phys; 2023 Apr; 24(4):e13960. PubMed ID: 36913192 [TBL] [Abstract][Full Text] [Related]
12. [A Proposal for the Absorbed Dose to Water Dosimetry for Flattening Filter-free Beams]. Katayose T; Kawachi T; Miyasaka R; Kodama T; Takase N; Iriyama E; Chang W; Saitoh H Igaku Butsuri; 2016; 36(2):79-84. PubMed ID: 28428458 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter. Almberg SS; Frengen J; Lindmo T Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444 [TBL] [Abstract][Full Text] [Related]
14. Equivalent (uniform) square field sizes of flattening filter free photon beams. Lechner W; Kuess P; Georg D; Palmans H Phys Med Biol; 2017 Sep; 62(19):7694-7713. PubMed ID: 28771143 [TBL] [Abstract][Full Text] [Related]
15. CyberKnife reference dosimetry: An assessment of the impact of evolving recommendations on correction factors and measured dose. Buchegger N; Grogan G; Hug B; Oliver C; Ebert M Med Phys; 2020 Aug; 47(8):3573-3585. PubMed ID: 32311095 [TBL] [Abstract][Full Text] [Related]
16. Comparison of k de Prez L; de Pooter J; Jansen B; Perik T; Wittkämper F Phys Med Biol; 2018 Feb; 63(4):045023. PubMed ID: 29461974 [TBL] [Abstract][Full Text] [Related]
17. Which accelerator photon beams are "clinic-like" for reference dosimetry purposes? Kalach NI; Rogers DW Med Phys; 2003 Jul; 30(7):1546-55. PubMed ID: 12906172 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of using a dose-area product ratio as beam quality specifier for photon beams with small field sizes. Pimpinella M; Caporali C; Guerra AS; Silvi L; De Coste V; Petrucci A; Delaunay F; Dufreneix S; Gouriou J; Ostrowsky A; Rapp B; Bordy JM; Daures J; Le Roy M; Sommier L; Vermesse D Phys Med; 2018 Jan; 45():106-116. PubMed ID: 29472074 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of an aSi-EPID with flattening filter free beams: applicability to the GLAaS algorithm for portal dosimetry and first experience for pretreatment QA of RapidArc. Nicolini G; Clivio A; Vanetti E; Krauss H; Fenoglietto P; Cozzi L; Fogliata A Med Phys; 2013 Nov; 40(11):111719. PubMed ID: 24320427 [TBL] [Abstract][Full Text] [Related]
20. Absorbed dose beam quality correction factors kappaQ for the NE2571 chamber in a 5 MV and a 10 MV photon beam. Palmans H; Mondelaers W; Thierens H Phys Med Biol; 1999 Mar; 44(3):647-63. PubMed ID: 10211800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]