These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 26111371)

  • 1. Dynamically Tuning Particle Interactions and Assemblies at Soft Interfaces: Reversible Order-Disorder Transitions in 2D Particle Monolayers.
    Park BJ; Lee D
    Small; 2015 Sep; 11(35):4560-7. PubMed ID: 26111371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the rheology and microstructure of particle-laden fluid interfaces with Janus particles.
    Qiao Y; Ma X; Liu Z; Manno MA; Keim NC; Cheng X
    J Colloid Interface Sci; 2022 Jul; 618():241-247. PubMed ID: 35339960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and stability of silica particle monolayers at horizontal and vertical octane-water interfaces.
    Horozov TS; Aveyard R; Binks BP; Clint JH
    Langmuir; 2005 Aug; 21(16):7405-12. PubMed ID: 16042472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying interfacial interparticle forces to alter microstructure and viscoelasticity of densely packed particle laden interfaces.
    Rahman SE; Laal-Dehghani N; Barman S; Christopher GF
    J Colloid Interface Sci; 2019 Feb; 536():30-41. PubMed ID: 30342409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast desorption of colloidal particles from fluid interfaces.
    Poulichet V; Garbin V
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5932-7. PubMed ID: 25922529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology.
    Deshmukh OS; van den Ende D; Stuart MC; Mugele F; Duits MH
    Adv Colloid Interface Sci; 2015 Aug; 222():215-27. PubMed ID: 25288385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithography.
    Scheidegger L; Fernández-Rodríguez MÁ; Geisel K; Zanini M; Elnathan R; Richtering W; Isa L
    Phys Chem Chem Phys; 2017 Mar; 19(13):8671-8680. PubMed ID: 28128829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly and rheology of ellipsoidal particles at interfaces.
    Madivala B; Fransaer J; Vermant J
    Langmuir; 2009 Mar; 25(5):2718-28. PubMed ID: 19437693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled jamming of particle-laden interfaces using a spinning drop tensiometer.
    Cheng HL; Velankar SS
    Langmuir; 2009 Apr; 25(8):4412-20. PubMed ID: 19275131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly ordered 2D microgel arrays: compression versus self-assembly.
    Geisel K; Richtering W; Isa L
    Soft Matter; 2014 Oct; 10(40):7968-76. PubMed ID: 25154634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collapse of Particle-Laden Interfaces under Compression: Buckling vs Particle Expulsion.
    Razavi S; Cao KD; Lin B; Lee KY; Tu RS; Kretzschmar I
    Langmuir; 2015 Jul; 31(28):7764-75. PubMed ID: 26099031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-field-induced capillary attraction between like-charged particles at liquid interfaces.
    Nikolaides MG; Bausch AR; Hsu MF; Dinsmore AD; Brenner MP; Gay C; Weitz DA
    Nature; 2002 Nov; 420(6913):299-301. PubMed ID: 12447435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D Stokesian Approach to Modeling Flow Induced Deformation of Particle Laden Interfaces.
    Laal Dehghani N; Khare R; Christopher GF
    Langmuir; 2018 Jan; 34(3):904-916. PubMed ID: 28877439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge interaction between particle-laden fluid interfaces.
    Xu H; Kirkwood J; Lask M; Fuller G
    Langmuir; 2010 Mar; 26(5):3160-4. PubMed ID: 19852479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids.
    Guzmán E; Martínez-Pedrero F; Calero C; Maestro A; Ortega F; Rubio RG
    Adv Colloid Interface Sci; 2022 Apr; 302():102620. PubMed ID: 35259565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of an Additive-Free Particle Spreading Method on Interactions between Charged Colloidal Particles at an Oil/Water Interface.
    Gao P; Yi Z; Xing X; Ngai T; Jin F
    Langmuir; 2016 May; 32(19):4909-16. PubMed ID: 27108987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing transition and interaction potential in monolayers of microparticles at fluid interfaces.
    Bonales LJ; Rubio JE; Ritacco H; Vega C; Rubio RG; Ortega F
    Langmuir; 2011 Apr; 27(7):3391-400. PubMed ID: 21361305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface deformations affect the orientation transition of magnetic ellipsoidal particles adsorbed at fluid-fluid interfaces.
    Davies GB; Krüger T; Coveney PV; Harting J; Bresme F
    Soft Matter; 2014 Sep; 10(35):6742-8. PubMed ID: 25069609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and Dynamics of Stimuli-Responsive Nanoparticle Monolayers at Fluid Interfaces.
    Qin S; Kang J; Yong X
    Langmuir; 2018 May; 34(19):5581-5591. PubMed ID: 29676917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticles at fluid interfaces: exploiting capping ligands to control adsorption, stability and dynamics.
    Garbin V; Crocker JC; Stebe KJ
    J Colloid Interface Sci; 2012 Dec; 387(1):1-11. PubMed ID: 22909962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.