BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26111399)

  • 1. Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees.
    Al-Timemy AH; Khushaba RN; Bugmann G; Escudero J
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):650-61. PubMed ID: 26111399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.
    Naik GR; Al-Timemy AH; Nguyen HT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):837-46. PubMed ID: 26394431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.
    Amsuess S; Goebel P; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss.
    Segil JL; Huddle SA; Weir RFF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):618-627. PubMed ID: 27390181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myoelectric feature extraction using temporal-spatial descriptors for multifunction prosthetic hand control.
    Khushaba RN; Al-Timemy A; Al-Ani A; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1696-1699. PubMed ID: 28268654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition.
    Khushaba RN; Al-Timemy AH; Al-Ani A; Al-Jumaily A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1821-1831. PubMed ID: 28358690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees.
    Zheng E; Wang L; Wei K; Wang Q
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2911-20. PubMed ID: 25014949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern recognition control of multifunction myoelectric prostheses by patients with congenital transradial limb defects: a preliminary study.
    Kryger M; Schultz AE; Kuiken T
    Prosthet Orthot Int; 2011 Dec; 35(4):395-401. PubMed ID: 21960053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees.
    Al-Timemy AH; Bugmann G; Escudero J
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30042296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG pattern recognition control of multifunctional prostheses by transradial amputees.
    Li G; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6914-7. PubMed ID: 19964455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Context-Dependent Upper Limb Prosthesis Control for Natural and Robust Use.
    Amsuess S; Vujaklija I; Goebel P; Roche AD; Graimann B; Aszmann OC; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):744-53. PubMed ID: 26173217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of direct and pattern recognition control for a two degree-of-freedom above elbow virtual prosthesis.
    Toledo C; Simon A; Muñoz R; Vera A; Leija L; Hargrove L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4332-5. PubMed ID: 23366886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory feedback in upper limb prosthetics.
    Antfolk C; D'Alonzo M; Rosén B; Lundborg G; Sebelius F; Cipriani C
    Expert Rev Med Devices; 2013 Jan; 10(1):45-54. PubMed ID: 23278223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved hand prostheses control for transradial amputees based on hybrid of voice recognition and electromyography.
    Alkhafaf OS; Wali MK; Al-Timemy AH
    Int J Artif Organs; 2021 Jul; 44(7):509-517. PubMed ID: 33287634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to determine the optimal features for control of a powered lower-limb prostheses.
    Farrell MT; Herr H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6041-6. PubMed ID: 22255717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses.
    Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.