These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26111399)

  • 41. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of multiple dynamic factors on the performance of myoelectric pattern recognition.
    Khushaba RN; Al-Timemy A; Kodagoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1679-82. PubMed ID: 26736599
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic time warping for reducing the effect of force variation on myoelectric control of hand prostheses.
    Powar OS; Chemmangat K
    J Electromyogr Kinesiol; 2019 Oct; 48():152-160. PubMed ID: 31357113
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new biomechanical hand prosthesis controlled by surface electromyographic signals.
    Andrade NA; Borges GA; de O Nascimento FA; Romariz AR; da Rocha AF
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6142-5. PubMed ID: 18003417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation.
    Crea S; Cipriani C; Donati M; Carrozza MC; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):250-7. PubMed ID: 25373108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Towards reducing the impacts of unwanted movements on identification of motion intentions.
    Li X; Chen S; Zhang H; Samuel OW; Wang H; Fang P; Zhang X; Li G
    J Electromyogr Kinesiol; 2016 Jun; 28():90-8. PubMed ID: 27093136
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses.
    Markovic M; Karnal H; Graimann B; Farina D; Dosen S
    J Neural Eng; 2017 Jun; 14(3):036007. PubMed ID: 28355147
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Online Grasp Force Estimation From the Transient EMG.
    Martinez IJR; Mannini A; Clemente F; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2333-2341. PubMed ID: 32894718
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A preliminary investigation of the effect of force variation for myoelectric control of hand prosthesis.
    Al-Timemy AH; Bugmann G; Escudero J; Outram N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5758-61. PubMed ID: 24111046
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses.
    Li G; Li Y; Yu L; Geng Y
    Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees.
    Jiang N; Vest-Nielsen JL; Muceli S; Farina D
    J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single channel-based myoelectric control of hand movements with Empirical Mode Decomposition.
    Al-Timemy AH; Bugmann G; Outram N; Escudero J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6059-62. PubMed ID: 22255721
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures.
    Lyons KR; Joshi SS; Joshi SS; Lyons KR
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational approaches to decode grasping force and velocity level in upper-limb amputee from intraneural peripheral signals.
    Cracchiolo M; Panarese A; Valle G; Strauss I; Granata G; Iorio RD; Stieglitz T; Rossini PM; Mazzoni A; Micera S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33725672
    [No Abstract]   [Full Text] [Related]  

  • 56. Selecting the optimal movement subset with different pattern recognition based EMG control algorithms.
    Al-Timemy AH; Khushaba RN; Escudero J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():315-318. PubMed ID: 28268340
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses.
    Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035
    [No Abstract]   [Full Text] [Related]  

  • 58. Multi-subject/daily-life activity EMG-based control of mechanical hands.
    Castellini C; Fiorilla AE; Sandini G
    J Neuroeng Rehabil; 2009 Nov; 6():41. PubMed ID: 19919710
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatio-Temporal Inertial Measurements Feature Extraction Improves Hand Movement Pattern Recognition without Electromyography.
    Khushaba RN; Krasoulis A; Al-Jumaily A; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2108-2111. PubMed ID: 30440819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.