These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26111404)

  • 1. Cascaded Network Body Channel Model for Intrabody Communication.
    Wang H; Tang X; Choy CS; Sobelman GE
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1044-52. PubMed ID: 26111404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of attenuation and dispersion through the skin in intrabody communications systems.
    Callejón MA; Roa LM; Reina-Tosina J; Naranjo-Hernández D
    IEEE Trans Inf Technol Biomed; 2012 Jan; 16(1):159-65. PubMed ID: 21997285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of galvanic-coupled intrabody communication using the human body circuit model.
    Kibret B; Seyedi M; Lai DT; Faulkner M
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1196-206. PubMed ID: 25014932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and Verification of Channel Transmission Characteristics of Human Body for Optimizing Data Transmission Rate in Electrostatic-Coupling Intra Body Communication System: A Comparative Analysis.
    Tseng Y; Su C; Ho Y
    PLoS One; 2016; 11(2):e0148964. PubMed ID: 26866602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An 802.11 n wireless local area network transmission scheme for wireless telemedicine applications.
    Lin CF; Hung SI; Chiang IH
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1201-8. PubMed ID: 21138238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication.
    Callejón MA; Naranjo-Hernández D; Reina-Tosina J; Roa LM
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3263-9. PubMed ID: 22736633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on intrabody communication for personal healthcare monitoring system.
    Alshehab A; Kobayashi N; Ruiz J; Kikuchi R; Shimamoto S; Ishibashi H
    Telemed J E Health; 2008 Oct; 14(8):851-7. PubMed ID: 18954257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Impulse Radio Intrabody Communication System for Wireless Body Area Networks.
    Cai Z; Seyedi M; Zhang W; Rivet F; Lai DTH
    J Med Biol Eng; 2017; 37(1):74-84. PubMed ID: 28286464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and feasibility study of human body communication transceiver based on FDM.
    Liu W; Gao Y; Jiang R; Chen X; Gao Z; Zhang Y; Du M
    Technol Health Care; 2018; 26(5):795-804. PubMed ID: 30223407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equivalent Circuit Model Viewed From Receiver Side in Human Body Communication.
    Nishida Y; Sasaki K; Yamamoto K; Muramatsu D; Koshiji F
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):746-755. PubMed ID: 31135370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on transmission characteristics and specific absorption rate using impedance-matched electrodes for various human body communication.
    Machida Y; Yamamoto T; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1883-6. PubMed ID: 24110079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Energy Efficient Technique Using Electric Active Shielding for Capacitive Coupling Intra-Body Communication.
    Ma C; Huang Z; Wang Z; Zhou L; Li Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equation environment coupling and interference on the electric-field intrabody communication channel.
    Xu R; Ng WC; Zhu H; Shan H; Yuan J
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2051-9. PubMed ID: 22562725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A design of a high-speed and high-efficiency capsule endoscopy system.
    Kim K; Yun S; Lee S; Nam S; Yoon YJ; Cheon C
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1005-11. PubMed ID: 22207636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication.
    Mahfuz MU; Makrakis D; Mouftah HT
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):208-22. PubMed ID: 25163066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PSSK modulation scheme for high-data rate implantable medical devices.
    Oh JY; Kim JH; Lee HS; Kim JY
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):634-40. PubMed ID: 19906593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive analysis of strength-based optimum signal detection in concentration-encoded molecular communication with spike transmission.
    Mahfuz MU; Makrakis D; Mouftah HT
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):67-83. PubMed ID: 25594973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications.
    Chi B; Yao J; Han S; Xie X; Li G; Wang Z
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1291-9. PubMed ID: 17605360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realistic Simulation for Body Area and Body-To-Body Networks.
    Alam MM; Ben Hamida E; Ben Arbia D; Maman M; Mani F; Denis B; D'Errico R
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27104537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Parametric Computational Analysis Into Galvanic Coupling Intrabody Communication.
    Callejon MA; Del Campo P; Reina-Tosina J; Roa LM; Callejon MA; Del Campo P; Reina-Tosina J; Roa LM
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1087-1096. PubMed ID: 28783652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.