BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 26111606)

  • 1. Differences in tissue distribution of iron from various clinically used intravenous iron complexes in fetal avian heart and liver.
    Spicher K; Brendler-Schwaab S; Schlösser C; Catarinolo M; Fütterer S; Langguth P; Enzmann H
    Regul Toxicol Pharmacol; 2015 Oct; 73(1):65-72. PubMed ID: 26111606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioequivalence decision for nanoparticular iron complex drugs for parenteral administration based on their disposition.
    Schnorr J; Fütterer S; Spicher K; Catarinolo M; Schlösser C; Enzmann H; Langguth P
    Regul Toxicol Pharmacol; 2018 Apr; 94():293-298. PubMed ID: 29454888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snapshots of Iron Speciation: Tracking the Fate of Iron Nanoparticle Drugs via a Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometric Approach.
    Neu HM; Alexishin SA; Brandis JEP; Williams AMC; Li W; Sun D; Zheng N; Jiang W; Zimrin A; Fink JC; Polli JE; Kane MA; Michel SLJ
    Mol Pharm; 2019 Mar; 16(3):1272-1281. PubMed ID: 30676753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Physicochemical Properties of the Iron Nanoparticle Drug Products: Brand and Generic Sodium Ferric Gluconate.
    Brandis JEP; Kihn KC; Taraban MB; Schnorr J; Confer AM; Batelu S; Sun D; Rodriguez JD; Jiang W; Goldberg DP; Langguth P; Stemmler TL; Yu YB; Kane MA; Polli JE; Michel SLJ
    Mol Pharm; 2021 Apr; 18(4):1544-1557. PubMed ID: 33621099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory challenges of nanomedicines and their follow-on versions: A generic or similar approach?
    Mühlebach S
    Adv Drug Deliv Rev; 2018 Jun; 131():122-131. PubMed ID: 29966685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: From production to clinical practice.
    Nikravesh N; Borchard G; Hofmann H; Philipp E; Flühmann B; Wick P
    Nanomedicine; 2020 Jun; 26():102178. PubMed ID: 32145382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue biodistribution of intravenous iron-carbohydrate nanomedicines differs between preparations with varying physicochemical characteristics in an anemic rat model.
    Funk F; Weber K; Nyffenegger N; Fuchs JA; Barton A
    Eur J Pharm Biopharm; 2022 May; 174():56-76. PubMed ID: 35337966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Biodistribution after Intravenous Dosing in Rats.
    Beekman CR; Matta M; Thomas CD; Mohammad A; Stewart S; Xu L; Chockalingam A; Shea K; Sun D; Jiang W; Patel V; Rouse R
    Nanomaterials (Basel); 2017 Dec; 8(1):. PubMed ID: 29283393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Redox Active and Chelatable Iron Assays to Determine Labile Iron Release From Intravenous Iron Formulations.
    Pai AB; Meyer DE; Bales BC; Cotero VE; Pai MP; Zheng N; Jiang W
    Clin Transl Sci; 2017 May; 10(3):194-200. PubMed ID: 28160427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron Oxide Nanoparticle Formulations for Supplementation.
    Pai AB
    Met Ions Life Sci; 2019 Jan; 19():. PubMed ID: 30855107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo DFO-chelatable labile iron release profiles among commercially available intravenous iron nanoparticle formulations.
    Pai AB; Pai MP; Meyer DE; Bales BC; Cotero VE; Zheng N; Jiang W
    Regul Toxicol Pharmacol; 2018 Aug; 97():17-23. PubMed ID: 29857115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Criticality of Surface Characteristics of Intravenous Iron-Carbohydrate Nanoparticle Complexes: Implications for Pharmacokinetics and Pharmacodynamics.
    Funk F; Flühmann B; Barton AE
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration.
    Simon-Yarza T; Baati T; Neffati F; Njim L; Couvreur P; Serre C; Gref R; Najjar MF; Zakhama A; Horcajada P
    Int J Pharm; 2016 Sep; 511(2):1042-7. PubMed ID: 27515292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The entry of iron into liver parenchyma cells following the injection of different iron preparations, and the different lesions produced with toxic doses.
    NISSIM JA
    J Physiol; 1952 Aug; 117(4):66P-67P. PubMed ID: 12991256
    [No Abstract]   [Full Text] [Related]  

  • 15. [Intravenous iron].
    DUFRESNE RR
    Union Med Can; 1952 Jun; 81(6):697-8. PubMed ID: 13005802
    [No Abstract]   [Full Text] [Related]  

  • 16. [Study of fractionated tissue juice. IX. Iron content of blood and tissue juice after intravenous administration of iron compounds of various molecular weights].
    FIEBIG W; DOROW H; KREMPIEN J; SCHWARTZKOPFF W
    Z Gesamte Exp Med; 1956; 127(1):30-8. PubMed ID: 13338407
    [No Abstract]   [Full Text] [Related]  

  • 17. Critical nanomaterial attributes of iron-carbohydrate nanoparticles: Leveraging orthogonal methods to resolve the 3-dimensional structure.
    Krupnik L; Joshi P; Kappler A; Flühmann B; Alston AB; Digigow R; Wick P; Neels A
    Eur J Pharm Sci; 2023 Sep; 188():106521. PubMed ID: 37423578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Tolerance of intravenous iron application].
    GOLDECK H; REMY D; MEYER F
    Arztl Wochensch; 1952 May; 7(21):489-90. PubMed ID: 14952397
    [No Abstract]   [Full Text] [Related]  

  • 19. [The behavior of intravenously administered iron in the organism].
    LINTZEL W
    Arztl Forsch; 1953 Mar; 7(3):I/134-6. PubMed ID: 13065190
    [No Abstract]   [Full Text] [Related]  

  • 20. [The passage of intravenously injected iron from the blood stream].
    OVERKAMP H
    Z Gesamte Exp Med; 1952; 120(1):86-95. PubMed ID: 13057308
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.