BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26111612)

  • 1. Binding, internalization and fate of Huntingtin Exon1 fibrillar assemblies in mitotic and nonmitotic neuroblastoma cells.
    Ruiz-Arlandis G; Pieri L; Bousset L; Melki R
    Neuropathol Appl Neurobiol; 2016 Feb; 42(2):137-52. PubMed ID: 26111612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Liquid to Solid Phase Transition Underlying Pathological Huntingtin Exon1 Aggregation.
    Peskett TR; Rau F; O'Driscoll J; Patani R; Lowe AR; Saibil HR
    Mol Cell; 2018 May; 70(4):588-601.e6. PubMed ID: 29754822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core.
    Lin HK; Boatz JC; Krabbendam IE; Kodali R; Hou Z; Wetzel R; Dolga AM; Poirier MA; van der Wel PCA
    Nat Commun; 2017 May; 8():15462. PubMed ID: 28537272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of neurotoxic HTTex1 assemblies in human neurons.
    Chongtham A; Isas JM; Pandey NK; Rawat A; Yoo JH; Mastro T; Kennedy MB; Langen R; Khoshnan A
    Neurobiol Dis; 2021 Nov; 159():105517. PubMed ID: 34563643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of mutant Huntingtin aggregates and toxicity by human myeloid leukemia factors.
    Banerjee M; Datta M; Bhattacharyya NP
    Int J Biochem Cell Biol; 2017 Jan; 82():1-9. PubMed ID: 27840155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Terminal Fragments of Huntingtin Longer than Residue 170 form Visible Aggregates Independently to Polyglutamine Expansion.
    Chen MZ; Mok SA; Ormsby AR; Muchowski PJ; Hatters DM
    J Huntingtons Dis; 2017; 6(1):79-91. PubMed ID: 28339398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autophagy preferentially degrades non-fibrillar polyQ aggregates.
    Zhao DY; Bäuerlein FJB; Saha I; Hartl FU; Baumeister W; Wilfling F
    Mol Cell; 2024 May; 84(10):1980-1994.e8. PubMed ID: 38759629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional profiles for distinct aggregation states of mutant Huntingtin exon 1 protein unmask new Huntington's disease pathways.
    Moily NS; Ormsby AR; Stojilovic A; Ramdzan YM; Diesch J; Hannan RD; Zajac MS; Hannan AJ; Oshlack A; Hatters DM
    Mol Cell Neurosci; 2017 Sep; 83():103-112. PubMed ID: 28743452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.
    Brahic M; Bousset L; Bieri G; Melki R; Gitler AD
    Acta Neuropathol; 2016 Apr; 131(4):539-48. PubMed ID: 26820848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology.
    Scherzinger E; Sittler A; Schweiger K; Heiser V; Lurz R; Hasenbank R; Bates GP; Lehrach H; Wanker EE
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4604-9. PubMed ID: 10200309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
    Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of prion-like transfer in Huntington's disease models.
    Jansen AH; Batenburg KL; Pecho-Vrieseling E; Reits EA
    Biochim Biophys Acta Mol Basis Dis; 2017 Mar; 1863(3):793-800. PubMed ID: 28040507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer.
    Sahoo B; Arduini I; Drombosky KW; Kodali R; Sanders LH; Greenamyre JT; Wetzel R
    PLoS One; 2016; 11(6):e0155747. PubMed ID: 27271685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superresolution Fluorescence Imaging of Mutant Huntingtin Aggregation in Cells.
    Sahl SJ; Vonk WIM
    Methods Mol Biol; 2019; 1873():241-251. PubMed ID: 30341614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Chemoenzymatic Semisynthetic Approach Provides Insight into the Role of Phosphorylation beyond Exon1 of Huntingtin and Reveals N-Terminal Fragment Length-Dependent Distinct Mechanisms of Aggregation.
    Kolla R; Gopinath P; Ricci J; Reif A; Rostami I; Lashuel HA
    J Am Chem Soc; 2021 Jul; 143(26):9798-9812. PubMed ID: 34161085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emerging role of the first 17 amino acids of huntingtin in Huntington's disease.
    Arndt JR; Chaibva M; Legleiter J
    Biomol Concepts; 2015 Mar; 6(1):33-46. PubMed ID: 25741791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale studies link amyloid maturity with polyglutamine diseases onset.
    Ruggeri FS; Vieweg S; Cendrowska U; Longo G; Chiki A; Lashuel HA; Dietler G
    Sci Rep; 2016 Aug; 6():31155. PubMed ID: 27499269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous self-assembly of pathogenic huntingtin exon 1 protein into amyloid structures.
    Trepte P; Strempel N; Wanker EE
    Essays Biochem; 2014; 56():167-80. PubMed ID: 25131594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of elongated polyglutamine tracts by a helical peptide derived from N-terminal huntingtin.
    Sethi R; Roy I
    IUBMB Life; 2020 Jul; 72(7):1528-1536. PubMed ID: 32320524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of soluble and aggregating polyQ proteins on cytotoxicity and type-1 myosin-dependent endocytosis in yeast.
    Berglund LL; Hao X; Liu B; Grantham J; Nyström T
    Sci Rep; 2017 Sep; 7(1):11328. PubMed ID: 28900136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.